• Title/Summary/Keyword: QTL mapping

Search Result 164, Processing Time 0.034 seconds

Recent Advances in Sheep Genome Mapping

  • Crawford, A.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1129-1134
    • /
    • 1999
  • The rapid development of the sheep genetic linkage map over the last five years has given us the ability to follow the inheritance of chromosomal regions. Initially this powerful resource was used to find markers linked to monogenic traits but there is now increasing interest in using the genetic linkage map to define the complex of genes that control multigenic production traits. Of particular interest are those production traits that are difficult to measure and select for using classical quantitative genetic approaches. These include resistance to disease where a disease challenge (necessary for selection) poses too much risk to valuable stud animals and meat and carcass qualities which can be measured only after the animal has been slaughtered. The goal for the new millennium will be to fully characterise the genetic basis of multigenic production traits. The genetic linkage map is a vital tool required to achieve this.

Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

  • Lim, Jung-Hyun;Yang, Hyun-Jung;Jung, Ki-Hong;Yoo, Soo-Cheul;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.149-160
    • /
    • 2014
  • Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 $F_7$ recombinant inbred lines (RILs) from a cross of japonica rice line 'SNU-SG1' and indica rice line 'Milyang23'. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.

QTL analysis of for micronutrient content in rice grain

  • Lee, Hyun-Sook;Shim, Kyu-Chan;Jeon, Yun-A;Ahn, Sang-Nag
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.144-144
    • /
    • 2017
  • Micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) have important roles for development and growth in plants but it also have roles in animals and humans. In previous studies, a Korean weedy rice, KH2J was selected to have tolerance to heavy metal, lead (Pb) compared with a cultivar, Milyang23. To identify QTLs for micronutrients concentration in grain, an F2 population (120 plants) were developed from a cross between KH2J and an indica rice cultivar, Milyang23. To measure the concentration of eight ions, Zn, Fe, Mn, Pb, calcium (Ca), copper (Cu), cadmium (Cd) and arsenic (As), grains were collected and digested with 65% nitric acid, and the ion contents were measured using inductively coupled plasma mass spectrometry. A total 27 putative quantitative trait loci (QTLs) were detected on 12 chromosomes by single point analysis and 22 putative QTLs were detected by composite interval mapping. The co-locations of QTL for Zn, Fe and Mn were observed on chromosome 5. The QTLs for Cd, Cu and Zn were co-localized on chromosome 10, and QTLs for Zn, As and Mn was on chromosome 12. The Zn concentration in F2 generation showed significant correlation with concentrations of As (r = -0.4), Cu (r = 0.5) and Fe (r = 0.2) (P < 0.01). Also, the Ca concentration was significantly related with Mn and Fe concentrations (P < 0.01). Fine mapping of these QTLs is underway to analyze their functional relationship.

  • PDF

QTL Mapping of Agronomic Traits Using an Introgression Line Population Derived from an Intersubspecific Cross in Rice

  • Oh, Chang-Sik;Park, In-Kyu;Kim, Dong-Min;Ahn, Sang-Nag
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.470-480
    • /
    • 2010
  • The objectives of this study were to identify QTLs for agronomic traits using introgression lines from a cross between a japonica weedy rice and a Tongil-type rice. A total of 75 introgression lines developed in the Tongil-type rice were characterized. A total of 368 introgressed segments including 285 homozygous and 83 heterozygous loci were detected on 12 chromosomes based on the genotypes of 136 SSR markers. Each of 75 introgression lines contained 0-9 homozygous and 0-8 heterozygous introgressed segments with an average of 5.8 segments per line. A total of 31 quantitative and 2 qualitative loci were identified for 14 agronomic traits and each QTL explained 4.1% to 76.6% of the phenotypic variance. Some QTLs were clustered in a few chromosomal regions. A first cluster was located near RM315 and RM472 on chromosome 1 with QTLs for 1,000 grain weight, culm length, grain width and thickness. Another cluster was detected with four QTLs for 1,000 grain weight, grain length, grain width and grain length/width ratio near the SSR marker RM249 on chromosome 5. Among the 31 QTLs, 9 (28.1%) Hapcheonaengmi3 alleles were beneficial in the Milyang23 background. ILs would be useful to confirm QTLs putatively detected in a primary mapping population for complex traits and serve as a starting point for map-based cloning of the QTLs. Additional backcrosses are being made to purify nearly isogenic lines (NILs) harboring a few favorable Hapcheonaengmi3 alleles in Milyang23 background.

Progress and Prospect of Rice Biotechnology in Korea

  • Tae Young, Chung
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 1997.06a
    • /
    • pp.23-49
    • /
    • 1997
  • This is a progress report of rice biotechnology including development of gene transformation system, gene cloning and molecular mapping in rice. The scope of the research was focused on the connection between conventional breeding and biotech-researches. Plant transformation via Agrobacterium or particle bombardment was developed to introduce one or several genes to recommended rice cultivars. Two chimeric genes containing a maize ribosome inactivating protein gene (RIP) and a gerbicide resistant gene (bar) were introduced to Nipponbare, a Japonica cultivar, and transmitted to Korean cultivars. The homozygous progenies of herbicide resistant transgenic plant showed good fertility and agronomic characters. To explore the genetic resourses in rice, over 8,000 cDNA clones from immature rice seed have been isolated and sequenced. About 13% of clones were identified as enzymes related to metabolic pathway. Among them, twenty clones have high homology with genes encoding enzymes in the photorespiratory carbon cycle reaction. Up to now about 100 clones were fully sequenced and registered at EMBL and GenBank. For the mapping of quantitative tarits loci (QTL) and eternal recombinant inbred population with 164 F13 lines (MGRI) was developed from a cross between Milyang 23 and Gihobyeo, Korean rice cultivars. After construction of fully saturated RFLP and AFLP map, quantitative traits using MGRI population were analyzed and integrated into the molecular map. Eighty seven loci were determined with 27 QTL characters including yield and yield components on rice chromosomes. Map based cloning was also tried to isolate semi-dwarf (sd-1) gene in rice. A DNA probe, RG 109, the most tightly linked to sd-1 gene was used to screen from bacterial artifical chromosome (BAC) libraries and five over lapping clones presumably containing sd-1 gene were isolated. Rice genetic database including results of biotech reasearch and classical genetics is provided at Korea Rice Genome Server which is accessible with world wide web (www) browser. The server provides rice cDNA sequences and map informations linked with phenotypic images.

Characterization of Purple-discolored, Uppermost Leaves of Soybean; QTL Mapping, HyperspectraI Imaging, and TEM Observation

  • JaeJin Lee;Jeongsun Lee;Seongha Kwon;Heejin You;Sungwoo Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.187-187
    • /
    • 2022
  • Purple-discoloration of the uppermost leaves has been observed in some soybean cultivars in recent years. The purpose of this study was to characterize the novel phenotypic changes between the uppermost and middle leaves via multiple approaches. First, quantitative trait loci mapping was conducted to detect loci associated with the novel phenotype using 85 recombinant inbred lines (RILs) of the 'Daepung' × PI 96983 population. 180K SNP data, a major quantitative trait locus (QTL) was identified at around 60 cM of chromosome 6, which accounts for 56% of total phenotypic variance. The genomic interval is about ~700kb, and a list of annotated genes includes the T-gene which is known to control pubescence and seed coat color and is presumed to encode flavonoid 35-hydroxylase (F3'H). Based on Hyperspectral imaging, the reflectance at 528-554 nm wavelength band was extremely reduced in the uppermost leaves compared to the middle (green leaves), which is presumed die to the accumulation of anthocyanins. In addition, purple-discolored leaf tissues were observed and compared to normal leaves using a transmission electronic microscope (TEM). Base on observations of the cell organelles, the purple-discolored uppermost leaves had many pigments formed in the epidermal cells unlike the normal middle leaves, and the cell wall thickness was twice as thick in the discolored leaves. The thickness of the thylakoid layer in the chloroplast the number of starch grains, the size of starch all decreased in the discolored leaves, while the number of plastoglobule and mitochondria increased.

  • PDF

Development of a Genetic Map of Chili Pepper Using Single Nucleotide Polymorphism Markers Generated from Next Generation Resequencing of Parents (양친의 대량 염기서열 해독을 통해 개발된 SNP 분자표지를 이용한 고추 유전자지도 작성)

  • Lee, Jundae;Park, Seok Jin;Do, Jae Wahng;Han, Jung-Heon;Choi, Doil;Yoon, Jae Bok
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.473-482
    • /
    • 2013
  • Molecular markers, as an efficient selection tool, have been and is being used for practical breeding program in chili pepper (Capsicum annuum L.). Recently, a lot of researches on inheritance and genetic analysis for quantitative traits including capsaicinoids, carotenoids, and sugar content in pepper are being performed worldwide. It has been also reported that QTL mapping is a necessary tool to develop molecular markers associated with the quantitative traits. In this study, we suggested a new method to construct a pepper genetic map using SNP (HRM) markers generated from NGS resequencing of female and male parents. Plant materials were C. annuum 'NB1' (female parent), C. chinense 'Jolokia' (male parent), and their $F_2$ population consisting of 94 progenies. Sequences of 4.6 Gbp and 6.2 Gbp were obtained from NGS resequencing of 'NB1' and 'Jolokia', respectively. Totally, 4.29 million SNPs between 'NB1' and 'Jolokia' were detected and the 1.76 million SNPs were clearly identified. Among them, total 145 SNP (HRM) primer pairs covering pepper genetic map were selected, and the 116 SNP (HRM) markers of them were located on this map. Total distance of the map, which consisted of 12 linkage groups and matched with basic chromosome numbers of pepper, was 1,167.9 cM. According to the mapping result, we concluded that our mapping method was suitable to construct a pepper genetic map fast and accurately. In addition, the genetic map could be directly used for QTL analysis of traits different between both parents.

Identification of Quantitative Trait Loci Associated with Isoflavone Contents in Soybean Seed

  • Kim Myung Sik;Park Min Jung;Hwang Jung Gyu;Jo Soo Ho;Ko Mi Suk;Chung Ill Min;Chung Jong Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.423-428
    • /
    • 2004
  • Soybean seeds contain high amounts of isoflavones that display biological effects and isoflavone content of soybean seed can vary by year, environment, and genotype. Objective of this study was to identify quantitative trait loci that underlie isoflavone content in soybean seeds. The study involved 85 $F_2$ populations derived from Korean soybean cultivar 'Kwangkyo' and wild type soybean 'IT182305' for QTL analysis associated with isoflavone content. Isoflavone content of seeds was determined by HPLC. The genetic map of 33 linkage groups with 207 markers was constructed. The linkage map spanned 2,607.5 cM across all 33 linkage groups. The average linkage distance between pair of markers among all linkage groups was 12.6 cM in Kosambi map units. Isoflavone content in $F_2$ generations varied in a fashion that suggested a continuous, polygenic inheritance. Eleven markers (4 RAPD, 3 SSR, 4 AFLP) were significantly associated with isoflavone content. Only two markers, Satt419 and CTCGAG3 had F-tests that were significant at P<0.01 in $F_2$ generation for isoflavone content. Interval mapping using the $F_2$ data revealed only two putative QTLs for isoflavone content. The peak QTL region on linkage group 3, which was near OPAG03c, explained $14\%$ variation for isoflavone content. The peak QTL region on linkage group 5, which was located near OPN14 accounted for $35.3\%$ variation for isoflavone content. Using both Map-Maker-QTL $(LOD{\geq}2.0)$ and single-factor analysis $(P{\leq}0.05)$, one marker, CTCGAG3 in linkage group 3 was associated with QTLs for isoflavone content. This information would then be used in identification of QTLs for isoflavone content with precision

Marker Assisted Selection-Applications and Evaluation for Commercial Poultry Breeding

  • Sodhi, Simrinder Singh;Jeong, Dong Kee;Sharma, Neelesh;Lee, Jun Heon;Kim, Jeong Hyun;Kim, Sung Hoon;Kim, Sung Woo;Oh, Sung Jong
    • Korean Journal of Poultry Science
    • /
    • v.40 no.3
    • /
    • pp.223-234
    • /
    • 2013
  • Poultry industry is abounding day by day as it engrosses less cost of investment per bird as compared to large animals. Poultry have the most copious genomic tool box amongst domestic animals for the detection of quantitative trait loci (QTL) and marker assisted selection (MAS). Use of multiple markers and least square techniques for mapping of QTL affecting quality and production traits in poultry is in vogue. Examples of genetic tests that are available to or used in industry programs are documented and classified into causative mutations (direct markers), linked markers in population-wide linkage disequilibrium (LD) with the QTL (LD markers), and linked markers in population wide equilibrium with the QTL (LE markers). Development of genome-wide SNP assays, role of 42 K, 60 K (Illumina) and 600 K (Affymetrix$^{(R)}$ Axim$^{(R)}$) SNP chip with next generation sequencing for identification of single nucleotide polymorphism (SNP) has been documented. Hybridization based, PCR based, DNA chip and sequencing based are the major segments of DNA markers which help in conducting of MAS in poultry. Economic index-marker assisted selection (EI-MAS) provides platform for simultaneous selection for production traits while giving due weightage to their marginal economic values by calculating predicted breeding value, using information on DNA markers which are normally associated with relevant QTL. Understanding of linkage equilibrium, linkage dis-equilibrium, relation between the markers and gene of interest are quite important for success of MAS. This kind of selection is the most useful tool in enhancing disease resistance by identifying candidate genes to improve the immune response. The application of marker assisted selection in selection procedures would help in improvement of economic traits in poultry.

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF