DOI QR코드

DOI QR Code

Development of a Genetic Map of Chili Pepper Using Single Nucleotide Polymorphism Markers Generated from Next Generation Resequencing of Parents

양친의 대량 염기서열 해독을 통해 개발된 SNP 분자표지를 이용한 고추 유전자지도 작성

  • Lee, Jundae (Research and Development Unit, Pepper and Breeding Institute) ;
  • Park, Seok Jin (Research and Development Unit, Pepper and Breeding Institute) ;
  • Do, Jae Wahng (Research and Development Unit, Pepper and Breeding Institute) ;
  • Han, Jung-Heon (Research and Development Unit, Pepper and Breeding Institute) ;
  • Choi, Doil (Department of Plant Science, Seoul National University) ;
  • Yoon, Jae Bok (Research and Development Unit, Pepper and Breeding Institute)
  • 이준대 ((주)고추와육종 기업부설연구소) ;
  • 박석진 ((주)고추와육종 기업부설연구소) ;
  • 도재왕 ((주)고추와육종 기업부설연구소) ;
  • 한정헌 ((주)고추와육종 기업부설연구소) ;
  • 최도일 (서울대학교 식물생산과학부) ;
  • 윤재복 ((주)고추와육종 기업부설연구소)
  • Received : 2013.01.09
  • Accepted : 2013.04.02
  • Published : 2013.08.31

Abstract

Molecular markers, as an efficient selection tool, have been and is being used for practical breeding program in chili pepper (Capsicum annuum L.). Recently, a lot of researches on inheritance and genetic analysis for quantitative traits including capsaicinoids, carotenoids, and sugar content in pepper are being performed worldwide. It has been also reported that QTL mapping is a necessary tool to develop molecular markers associated with the quantitative traits. In this study, we suggested a new method to construct a pepper genetic map using SNP (HRM) markers generated from NGS resequencing of female and male parents. Plant materials were C. annuum 'NB1' (female parent), C. chinense 'Jolokia' (male parent), and their $F_2$ population consisting of 94 progenies. Sequences of 4.6 Gbp and 6.2 Gbp were obtained from NGS resequencing of 'NB1' and 'Jolokia', respectively. Totally, 4.29 million SNPs between 'NB1' and 'Jolokia' were detected and the 1.76 million SNPs were clearly identified. Among them, total 145 SNP (HRM) primer pairs covering pepper genetic map were selected, and the 116 SNP (HRM) markers of them were located on this map. Total distance of the map, which consisted of 12 linkage groups and matched with basic chromosome numbers of pepper, was 1,167.9 cM. According to the mapping result, we concluded that our mapping method was suitable to construct a pepper genetic map fast and accurately. In addition, the genetic map could be directly used for QTL analysis of traits different between both parents.

효율적인 선발방법으로서 분자표지는 실제적인 고추(Capsicum annuum L.) 육종 과정에 사용되어 왔다. 최근에는 고추의 양적 형질로 알려진 매운맛, 색소 및 당 함량 등에 관한 다수의 유전분석 연구가 세계적으로 수행되고 있다. 또한 양적형질과 연관된 분자표지를 개발하기 위해서는 QTL mapping이 필수적이라고 보고되고 있다. 본 연구에서는 하나의 새로운 방법으로, 양친의 NGS resequencing을 통해 고추 유전자지도 상의 위치가 알려져 있는 분자표지를 일부 선발하여 SNP(HRM) 분자표지로 개발한 후 이를 이용하여 고추 유전체 전체를 포함하는 유전자지도 작성을 제안하고자 하였다. 식물재료는 C. annuum 'NB1'(모친)과 C. chinense 'Jolokia'(부친) 및 이들의 $F_2$ 세대 94개체를 사용하였다. 양친에 대해 NGS resequencing을 수행하여 각각 4.6Gbp와 6.2Gbp의 염기서열을 얻었다. 'NB1'과 'Jolokia' 간의 총 SNP 수는 429만개였으며, 그 중 확실한 SNP 수는 176만개였다. 이 중에서 고추 유전자지도 내 위치를 고려하여 145개의 SNP(HRM) 분석용 프라이머를 디자인하였으며, 그 중 116개가 성공적으로 다형성을 보여 유전자지도 작성에 사용되었다. 총 연관거리는 1,167.9cM였고, 연관군 수는 고추의 기본염색체 수와 일치하는 12개였다. 결과적으로 본 연구에서 제시된 방법은 시간적인 효율성과 예측의 정확성 면에서 새로운 고추 유전자지도 작성에 매우 적합함은 물론 작성된 유전자지도는 양친에서 차이를 보이는 특정 형질에 대한 QTL 분석을 하는데 바로 사용될 수 있을 것으로 판단되었다.

Keywords

References

  1. Bombarely, A., N. Menda, I.Y. Tecle, R.M. Buels, S. Strickler, T. Fischer-York, A. Pujar, J. Leto, J. Gosselin, and L.A. Mueller. 2011. The sol genomics network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Res. 39:D1149-D1155. https://doi.org/10.1093/nar/gkq866
  2. Botstein, D., R.L. White, M. Skolnick, and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
  3. Ha, S.H., J.B. Kim, J.S. Park, S.W. Lee, and K.J. Cho. 2007. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: Deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J. Exp. Bot. 58:3135-3144. https://doi.org/10.1093/jxb/erm132
  4. Jo, Y.D., Y.M. Kim, M.N. Park, J.H. Yoo, M.K. Park, B.D. Kim, and B.C. Kang. 2010. Development and evaluation of broadly applicable markers for Restorer-of-fertility in pepper. Mol. Breeding 25:187-201. https://doi.org/10.1007/s11032-009-9318-3
  5. Kang, B.C., S.H. Nahm, J.H. Huh, H.S. Yoo, J.W. Yu, M.H. Lee, and B.D. Kim. 2001. An interspecific (Capsicum annuum ${\times}$ C. chinense) $F_2$ linkage map in pepper using RFLP and AFLP markers. Theor. Appl. Genet. 102:531-539. https://doi.org/10.1007/s001220051678
  6. Kang, W.H., N.H. Hoang, H.B. Yang, J.K. Kwon, S.H. Jo, J.K. Seo, K.H. Kim, D. Choi, and B.C. Kang. 2010. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor. Appl. Genet. 120:1587-1596. https://doi.org/10.1007/s00122-010-1278-9
  7. Kim, H.J., H.B. Yang, B.N. Chung, and B.C. Kang. 2008. Survey and application of DNA makers linked to TSWV resistance. Kor. J. Hort. Sci. Technol. 26:464-470.
  8. Kim, O.R., M.C. Cho, B.D. Kim, and J.H. Huh. 2010. A splicing mutation in the gene encoding phytoene synthase causes orange coloration in habanero pepper fruits. Mol. Cells 30:569-574. https://doi.org/10.1007/s10059-010-0154-4
  9. Kosambi, D.D. 1944. The estimation of map distance from recombination value. Ann. Eug. 12:172-175.
  10. Korean Seed Association (KSA). 2012. Production of Korean vegetable seeds in 2011. http://www.kosaseed.or.kr/html/mu4 _sub03_view.asp?bbs_num=1229.
  11. Lee, J., J.B. Yoon, J.H. Han, W.P. Lee, S.H. Kim, and H.G. Park. 2010a. Three AFLP markers tightly linked to the genic male sterility ms3 gene in chili pepper (Capsicum annuum L.) and conversion to a CAPS marker. Euphytica 173:55-61. https://doi.org/10.1007/s10681-009-0107-1
  12. Lee, J., J.H. Han, C.G. An, W.P. Lee, and J.B. Yoon. 2010b. A CAPS marker linked to a genic male-sterile gene in the colored sweet pepper, 'Paprika' (Capsicum annuum L.). Breed. Sci. 60:93-98. https://doi.org/10.1270/jsbbs.60.93
  13. Lee, J., J.W. Do, J.H. Han, C.G An, O.Y. Kweon, Y.K. Kim, and J.B. Yoon. 2011. Allelism and molecular marker tests for genic male sterility in paprika cultivars. Kor. J. Hort. Sci. Technol. 29:130-134.
  14. Lee, J., W.P. Lee, J.H. Han, and J.B. Yoon. 2010c. Development of molecular marker linked to a genic male-sterile gene, msk in chili pepper. Kor. J. Hort. Sci. Technol. 28:270-274.
  15. Lee, J.M., S.H. Nahm, Y.M. Kim, and B.D. Kim. 2004. Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor. Appl. Genet. 108:619-627. https://doi.org/10.1007/s00122-003-1467-x
  16. Lincoln, S., M. Daly, and E. Lander. 1993. Constructing genetic linkage maps with MAPMAKER/EXP. Version 3.0: A tutorial and reference manual. 3rd ed. Whitehead Institute for Biomedical Research, Cambridge, MA.
  17. Livingstone, K.D., V.K. Lackney, J.R. Blauth, R. van Wijk, and M.K. Jahn. 1999. Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183-1202.
  18. Lu, F.H., M.C. Cho, and Y.J. Park. 2012. Transcriptome profiling and molecular marker discovery in red pepper, Capsicum annuum L. TF68. Mol. Biol. Rep. 39:3327-3335. https://doi.org/10.1007/s11033-011-1102-x
  19. Lu, F.H., M.Y. Yoon, Y.I. Cho, J.W. Chung, K.T. Kim, M.C. Cho, S.R. Cheong, and Y.J. Park. 2011. Transcriptome analysis and SNP/SSR marker information of red pepper variety YCM334 and Taean. Sci. Hort. 129:38-45. https://doi.org/10.1016/j.scienta.2011.03.003
  20. Ministry of Food, Agriculture, Forestry and Fisheries (MIFAFF). 2012. Statistics for food, agriculture, forestry and fisheries in 2011. MIFAFF, Gwacheon, Korea.
  21. Min, W.K., S. Kim, S.K. Sung, B.D. Kim, and S. Lee. 2009. Allelic discrimination of the Restorer-of-fertility gene and its inheritance in peppers (Capsicum annuum L.). Theor. Appl. Genet. 119:1289-1299. https://doi.org/10.1007/s00122-009-1134-y
  22. Minamiyama, Y., M. Tsuro, and M. Hirai. 2006. An SSR-based linkage map of Capsicum annuum. Mol. Breeding 18:157-169. https://doi.org/10.1007/s11032-006-9024-3
  23. Prince, J.P., Y. Zhang, E.R. Radwanski, and M.M. Kyle. 1997. A versatile and high-yielding protocol for the preparation of genomic DNA from Capsicum spp. (pepper). Hortscience 32:937-939.
  24. Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids Res. 17:6463-6471. https://doi.org/10.1093/nar/17.16.6463
  25. The Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635-641. https://doi.org/10.1038/nature11119
  26. Voorrips, R.E. 2002. MAPCHART: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 93:77-78. https://doi.org/10.1093/jhered/93.1.77
  27. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: A new technique for DNA fingerprinting. Nucl. Acids Res. 23:4407-4414. https://doi.org/10.1093/nar/23.21.4407
  28. Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski, and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18:6531-6535. https://doi.org/10.1093/nar/18.22.6531
  29. Wittwer, C.T., G.H. Reed, C.N. Gundry, J.G. Vandersteen, and R.J. Pryor. 2003. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinic. Chem. 49:853-860. https://doi.org/10.1373/49.6.853
  30. Wu, F., N.T. Eannetta, Y. Xu, R. Durrett, M. Mazourek, M.M. Jahn, S.D. Tanksley. 2009. A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor. Appl. Genet. 118:1279-1293. https://doi.org/10.1007/s00122-009-0980-y
  31. Wyatt, L.E., N.T. Eannetta, G.M. Stellari, and M. Mazourek. 2012. Development and application of a suite of non-pungency markers for the Pun1 gene in pepper (Capsicum spp.). Mol. Breeding 30:1525-1529. https://doi.org/10.1007/s11032-012-9716-9
  32. Yang, H.B., W.Y. Liu, W.H. Kang, J.H. Kim, H.J. Cho, J.H. Yoo, and B.C. Kang. 2012. Development and validation of L allelespecific markers in Capsicum. Mol. Breeding 30:819-829. https://doi.org/10.1007/s11032-011-9666-7
  33. Yi, G., J.M. Lee, S. Lee, D. Choi, and B.D. Kim. 2006. Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor. Appl. Genet. 114:113-130. https://doi.org/10.1007/s00122-006-0415-y

Cited by

  1. A SNP-based genetic linkage map of Capsicum baccatum and its comparison to the Capsicum annuum reference physical map vol.36, pp.5, 2016, https://doi.org/10.1007/s11032-016-0485-8
  2. Development of HRM Markers Based on SNPs Identified from Next Generation Resequencing of Susceptible and Resistant Parents to Gummy Stem Blight in Watermelon vol.50, pp.4, 2018, https://doi.org/10.9787/kjbs.2018.50.4.424
  3. Molecular advancements in male sterility systems of Capsicum: A review vol.139, pp.1, 2013, https://doi.org/10.1111/pbr.12757