DOI QR코드

DOI QR Code

Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

  • Lim, Jung-Hyun (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Yang, Hyun-Jung (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Jung, Ki-Hong (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University) ;
  • Yoo, Soo-Cheul (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Paek, Nam-Chon (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2013.11.13
  • Accepted : 2013.12.23
  • Published : 2014.02.28

Abstract

Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 $F_7$ recombinant inbred lines (RILs) from a cross of japonica rice line 'SNU-SG1' and indica rice line 'Milyang23'. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.

Keywords

References

  1. Adenot, X., Elmayan, T., Lauressergues, D., Boutet, S., Bouche, N., Gasciolli, V., and Vaucheret, H. (2006). DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr. Biol. 16, 927-932. https://doi.org/10.1016/j.cub.2006.03.035
  2. Asami, T., and Yoshida, S. (1999). Brassinosteroid biosynthesis inhibitors. Trends Plant Sci. 4, 348-353. https://doi.org/10.1016/S1360-1385(99)01456-9
  3. Cao, P., Jung, K.H., Choi, D.S., Hwang, D.H., Zhu, J., and Ronald, P.C. (2012). The rice oligonucleotide array database an atlas of rice gene expression. Rice 5, 17. https://doi.org/10.1186/1939-8433-5-17
  4. Chen, M., Luo, J., Shao, G., Wei, X., Tang, S., Sheng, Z., Song, J., and Hu, P. (2012). Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Plant Cell Rep. 31, 863-872. https://doi.org/10.1007/s00299-011-1207-7
  5. Chin, J.H., Kim, J.H., Jiang, W., Chu, S.H., Woo, M.O., Han, L., Brar, D., and Koh, H.J. (2007). Identification of subspeciesspecific STS markers and their association with segregation distortion in rice (Oryza sativa L.). J. Crop Sci. Biotech. 10, 175-184.
  6. Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., and Feldmann, K.A. (2001). Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J. 26, 573-582. https://doi.org/10.1046/j.1365-313x.2001.01055.x
  7. Corey, E.J., Seiichi, P.T., and Bartel, B. (1993). Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proc. Natl. Acad. Sci. USA 90, 11628-11632. https://doi.org/10.1073/pnas.90.24.11628
  8. Dupuis, J., and Siegmund, D. (1999). Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151, 373-386.
  9. Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868. https://doi.org/10.1073/pnas.95.25.14863
  10. Fan, S.C., Lin, C.S., Hsu, P.K., Lin, S.H., and Tsay, Y.F. (2009). The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 21, 2750-2761. https://doi.org/10.1105/tpc.109.067603
  11. Farooq, M., Tagle, A.G., Santos, R.E., Ebron, L.A., Fujita, D., and Kobayashi, N. (2010). Quantitative trait loci mapping for leaf length and leaf width in rice cv. IR64 derived lines. J. Integr. Plant Biol. 52, 578-584. https://doi.org/10.1111/j.1744-7909.2010.00955.x
  12. Fujii, S., Hirai, K., and Saka, H. (1991). Growth-regulating action of brassinolide in rice plants. In: Brassinosteroids. Chemistry, Bioactivity, and Application. H.G. Cutler, T. Yokota, G. Adam, eds., (American Chemical Society, Washington DC), 74, 306-311.
  13. Hayama, R., and Coupland, G. (2004). The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol. 135, 677-684. https://doi.org/10.1104/pp.104.042614
  14. Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K. (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719-722. https://doi.org/10.1038/nature01549
  15. Hedden, P. (2003). The genes of the Green Revolution. Trends Genet. 19, 5-9. https://doi.org/10.1016/S0168-9525(02)00009-4
  16. Huang, X., Feng, Q., Qian, Q., Zhao, Q., Wang, L., Wang, A., Guan, J., Fan, D., Weng, Q., Huang, T., et al. (2009). High-throughput genotyping by whole-genome resequencing. Genome Res. 19, 1068-1076. https://doi.org/10.1101/gr.089516.108
  17. Huang, C., Jiang, S.K., Feng, L.L., Xu, Z.J., and Chen, W.F. (2010). Analysis of QTLs for mesocotyl length in rice (Oryza sativa L.). Acta Argon. Sin. 36, 1108-1113. https://doi.org/10.3724/SP.J.1006.2010.01108
  18. International Rice Genome Sequencing Project (2005). The mapbased sequence of the rice genome. Nature 436, 793-800. https://doi.org/10.1038/nature03895
  19. Ishimaru, K., Ono, K., and Kashiwagi, T. (2004). Identification of a new gene controlling plant height in rice using the candidategene strategy. Planta 218, 388-395. https://doi.org/10.1007/s00425-003-1119-z
  20. Jiang, J.H., Liu, Q.M., Zhang, H., Liu, J., Lu, C., Ni, W.L., and Hong, D.L. (2012). Tiller morphogenesis and mortality were controlled by different loci in rice (Oryza sativa L.). Afr. J. Agric. Res. 7, 3964-3977.
  21. Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541-544. https://doi.org/10.1038/ng.591
  22. Joehanes, R., and Nelson, J.C. (2008). QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24, 2788-2789. https://doi.org/10.1093/bioinformatics/btn523
  23. Jung, K.H., Jeon, J.S., and An, G. (2011). Web tools for rice transcriptome analyses. J. Plant Biol. 54, 65-80. https://doi.org/10.1007/s12374-011-9146-y
  24. Jung, K.H., Gho H.J., Giong H.K., Chandran A.K.N., Nguyen Q.N., Choi H.B, Zhang, T., Wang, W., Kim, J.H., Choi, H.K., et al. (2013). Genome-wide identification and analysis of Japonica and Indica cultivar-preferred transcripts in rice using 983 Affymetrix array data. Rice 6, 19. https://doi.org/10.1186/1939-8433-6-19
  25. Khush, G.S. (1995). Breaking the yield frontier of rice. Geo J. 35, 329-332.
  26. Khush, G.S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 59, 1-6. https://doi.org/10.1007/s11103-005-2159-5
  27. Kosambi, D. (1994). The estimation of map distance from recombination values. Ann. Eugen. 12, 172-175.
  28. Lander, E.S., and Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185-199.
  29. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., and Newberg, L.A. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174-181. https://doi.org/10.1016/0888-7543(87)90010-3
  30. Li, S., Qian, Q., Fu, Z., Zeng, D., Meng, X., Kyozuka, J., Maekawa, M., Zhu, X., Zhang, J., Li, J., et al. (2009). Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J. 58, 592-605. https://doi.org/10.1111/j.1365-313X.2009.03799.x
  31. Li, Y., Fan, C., Xing, Y., Jiang, Y., Luo, L., Sun, L., Shao, D., Xu, C., Li, X., Xiao, J., et al. (2011). Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43, 1266-1269. https://doi.org/10.1038/ng.977
  32. Li, S., Xie, K., Li, W., Zou, T., Ren, Y., Wang, S., Deng, Q., Zheng, A., Zhu, J., Liu, H., et al. (2012). Resequencing and genetic variation identification of a rice line with ideal plant architecture. Rice 5, 18. https://doi.org/10.1186/1939-8433-5-18
  33. Liang, Y.S., Gao, Z.Q., Shen, X.H., Zhan, X.D., Zhang, Y.X., Wu, W.M., Cao, L.Y., and Cheng, S.H. (2011). Mapping and comparative analysis of QTL for rice plant height based on different sample sizes within a single line in RIL population. Rice Sci. 18, 265-272. https://doi.org/10.1016/S1672-6308(12)60004-3
  34. Lin, Y.R., Wu, S.C., Chen, S.E., Tseng, T.H., Chen, C.S., Kuo, S.C., Wu, H.P., and Hsing, Y.C. (2011). Mapping of quantitative trait loci for plant height and heading date in two inter-subspecific crosses of rice and comparison across Oryza genus. Bot. Stud. 52, 1-14.
  35. Lincoln, S., Daly, M., and Lander, E. (1993). Constructing genetic linkage maps with MAPMAKER/EXP version 3.0. A tutorial and reference manual. Whitehead Institute for Biomedical Research 3rd (ed) Technical Report.
  36. Liu, G.L., Mei, H.W., Yu, X.Q., Zou, G.H., Liu, H.Y., Hu, S.P., Li, M.S., Wu, J.H., Chen, L., and Luo, J. (2008). QTL analysis of panicle neck diameter, a trait highly correlated with panicle size, under well-watered and drought conditions in rice (Oryza sativa L.). Plant Sci. 174, 71-77. https://doi.org/10.1016/j.plantsci.2007.09.011
  37. Liu, Y.B., Lu, S.M., Zhang, J.F., Liu, S., and Lu, Y.T. (2009). A xyloglucan endotransglucosylase/hydrolase involves in growth of primary root and alters the deposition of cellulose in Arabidopsis. Planta 226, 1547-1560.
  38. Liu, G.F., Li, M., Wen, J., Du, Y., and Zhang, Y.M. (2010). Functional mapping of quantitative trait loci associated with rice tillering. Mol. Genet. Genomics 284, 263-271. https://doi.org/10.1007/s00438-010-0566-z
  39. Liu, G., Zhu, H., Zhang, G., Li, L., and Ye, G. (2012). Dynamic analysis of QTLs on tiller number in rice (Oryza sativa L.) with single segment substitution lines. Theor. Appl. Genet. 125, 143-153. https://doi.org/10.1007/s00122-012-1822-x
  40. Lu, J., Sivamani, E., Azhakanandam, K., Samadder, P., Li, X., and Qu, R. (2008). Gene expression enhancement mediated by the 5' UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Mol. Genet. Genomics 279, 563-572. https://doi.org/10.1007/s00438-008-0333-6
  41. Marathi, B., Guleria, S., Mohapatra, T., Parsad, R., Mariappan, N., Kurungara, V.K., Atwal, S.S., Prabhu, K.V., Singh, N.K., and Singh, A.K. (2012). QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.). BMC Plant Biol. 12, 137. https://doi.org/10.1186/1471-2229-12-137
  42. Maris, A., Suslov, D., Fry, S.C., Verbelen, J.P., and Vissenberg, K. (2009). Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension. J. Exp. Bot. 60, 3959-3972. https://doi.org/10.1093/jxb/erp229
  43. Meuwissen T. (2010). Use of whole genome sequence data for QTL mapping and genomic selection. In Proceedings of the 9th World Congress on Genetics Applied to Livestock Production. [Abstract ID 0018, ISBN 978-3-00-031608-1]
  44. Morinaka, Y., Sakamoto, T., Inukai, Y., Agetsuma, M., Kitano, H., Ashikari, M., and Matsuoka, M. (2006). Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol. 141, 924-931. https://doi.org/10.1104/pp.106.077081
  45. Murray, M.G., and Thompson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4325. https://doi.org/10.1093/nar/8.19.4321
  46. Neto, E.C., Keller, M.P., Broman, A.F., Attie, A.D., Jansen, R.C., Broman, K.W., and Yandell, B.S. (2012). Quantile-based permutation thresholds for quantitative trait loci hotspots. Genetics 191, 1355-1365. https://doi.org/10.1534/genetics.112.139451
  47. Paul, C., and Janet, B. (1999). In vitro activities of four xyloglucan endotransglycosylases from Arabidopsis. Plant J. 18, 371-382. https://doi.org/10.1046/j.1365-313X.1999.00459.x
  48. Qu, Z., Li, L., Luo, J., Wang, P., Yu, S., Mou, T., Zheng, X., and Hu, Z. (2012). QTL mapping of combining ability and heterosis of agronomic traits in rice backcross recombinant inbred lines and hybrid crosses. PLoS One 7, e28463. https://doi.org/10.1371/journal.pone.0028463
  49. Rahman, L., Khanam, M.S., and Kho, H.J. (2008). QTL analysis for yield related traits using populations derived from an indicajaponica hybrid in rice (Oryza sativa L.). Czech J. Genet. Plant Breed. 3, 93-104.
  50. Rose, A.B., Elfersi, T., Parra, G., and Korf, I. (2008). Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell 20, 543-551. https://doi.org/10.1105/tpc.107.057190
  51. Routaboul, J.M., Dubos, C., Beck, G., Marquis, C., Bidzinski, P., Loudet, O., and Lepiniec, L. (2012). Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. J. Exp. Bot. 63, 3749-3764. https://doi.org/10.1093/jxb/ers067
  52. Sano, Y. (1992). Genetic comparisons of chromosome 6 between wild and cultivated rice. Jpn. J. Breed. 42, 561-572. https://doi.org/10.1270/jsbbs1951.42.561
  53. Suh, H., and Hue, M. (1978). The segregation mode of plant height in the cross of rice varieties. XI. Linkage analysis of the semidwarfness of the rice variety 'Tongil'. Korean J. Breed. 10, 1-6.
  54. Takagi, H., Abe, A., Yoshida, K., Kosugi, S., Natsume, S., Mitsuoka, C., Uemura, A., Utsushi, H., Tamiru, M., Takuno, S., et al. (2013). QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74, 174-183. https://doi.org/10.1111/tpj.12105
  55. Tamura, K., Nomura, K., Oshima, I., Namai, H., Yano, M., Sasaki, T., and Kikuchi, F. (1998). Identification of restriction fragment length polymorphism markers tightly linked to a major photoperiod sensitivity gene, Se-1, and to a blast resistance gene, Pi-zt, in rice. SABRAO J. Breed. Genet. 30, 61-67.
  56. Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S., and McCouch, S. (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11, 1441-1452. https://doi.org/10.1101/gr.184001
  57. Tisne, S., Reymond, M., Vile, D., Fabre, J., Dauzat, M., Koornneef, M., and Granier, C. (2008). Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis. Plant Physiol. 148, 1117-1127. https://doi.org/10.1104/pp.108.124271
  58. Tomohiko, T., Hirokazu, T., and Hirofumi, U. (1996). Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122, 1589-1600.
  59. Trewavas, A.J. (2001). The population/biodiversity paradox. Agricultural efficiency to save wilderness. Plant Physiol. 125, 174-179. https://doi.org/10.1104/pp.125.1.174
  60. Tuinstra, M., Ejeta, G., and Goldsbrough, P. (1997). Heterogeneous inbred family (HIF) analysis: a method for developing nearisogenic lines that differ at quantitative trait loci. Theor. Appl. Genet. 95, 1005-1011. https://doi.org/10.1007/s001220050654
  61. Wang, L., Wang, A., Huang, X., Zhao, Q., Dong, G., Qian, Q., Sang, T., and Han, B. (2010). Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor. Appl. Genet. 122, 327-340.
  62. Wang, P., Zhou, G., Yu, H., and Yu, S. (2011). Fine mapping a major QTL for flag leaf size and yield-related traits in rice. Theor. Appl. Genet. 123, 1319-1330. https://doi.org/10.1007/s00122-011-1669-6
  63. Wang, P., Zhou, G., Cui, K., Li, Z., and Yu, S. (2012). Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Mol. Breed. 29, 99-113. https://doi.org/10.1007/s11032-010-9529-7
  64. Wu, C.Y., Trieu, A., Radhakrishnan, P., Kwok, S.F., Harris, S., Zhang, K., Wang, J., Wan, J., Zhai, H., Takatsuto, S., et al. (2008). Brassinosteroids regulate grain filling in rice. Plant Cell 20, 2130-2145. https://doi.org/10.1105/tpc.107.055087
  65. Xu, X., Liu, X., Ge, S., Jensen, J.D., Hu, F., Li, X., Dong, Y., Gutenkunst, R.N., Fang, L., Huang, L., et al. (2012). Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30, 105-111. https://doi.org/10.1038/nbt.2050
  66. Yan, J.Q., Zhu, J., He, C.X., Benmousa, M., and Wu, P. (1998). Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor. Appl. Genet. 97, 267-274. https://doi.org/10.1007/s001220050895
  67. Yoo, S.C., Cho, S.H., Zhang, H., Paik, H.C., Lee, C.H., Li, J., Yoo, J.H., Lee, B.W., Koh, H.J., Seo, H.S., et al. (2007). Quantitative trait loci associated with functional stay-green SNU-SG1 in rice. Mol. Cells 24, 83-94.
  68. Yoo, S.C., Cho, S.H., Sugimoto, H., Li, J., Kusumi, K., Koh, H.J., Iba, K., and Paek, N.C. (2009). Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol. 150, 388-401. https://doi.org/10.1104/pp.109.136648
  69. Yu, B.S., Lin, Z.W., Li, H.X., Li, X.J., Li, J.Y., Wang, Y.H., Zhang, X., Zhu, Z.F., Zhai, W.X., Wang, X.K., et al. (2007). TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 52, 891-898. https://doi.org/10.1111/j.1365-313X.2007.03284.x
  70. Yue, B., Xue, W.Y., Luo, L.J., and Xing, Y.Z. (2006). QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genet. Sin. 33, 824-832. https://doi.org/10.1016/S0379-4172(06)60116-9

Cited by

  1. Landscape of genomic diversity and trait discovery in soybean vol.6, pp.1, 2016, https://doi.org/10.1038/srep23598
  2. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions vol.11, pp.5, 2016, https://doi.org/10.1371/journal.pone.0155425
  3. Genome engineering and plant breeding: impact on trait discovery and development vol.35, pp.7, 2016, https://doi.org/10.1007/s00299-016-1993-z
  4. Identification and fine mapping of qPH6, a novel major quantitative trait locus for plant height in rice vol.35, pp.1, 2015, https://doi.org/10.1007/s11032-015-0196-6
  5. Fine mapping for double podding gene in chickpea vol.129, pp.1, 2016, https://doi.org/10.1007/s00122-015-2610-1
  6. Genetic dissection of leaf-related traits using 156 chromosomal segment substitution lines vol.58, pp.6, 2015, https://doi.org/10.1007/s12374-015-0402-4
  7. Recent Perspective of Next Generation Sequencing: Applications in Molecular Plant Biology and Crop Improvement 2016, https://doi.org/10.1007/s40011-016-0770-7
  8. Rapid location of Glomerella leaf spot resistance gene locus in apple by whole genome re-sequencing vol.37, pp.8, 2017, https://doi.org/10.1007/s11032-017-0684-y
  9. Genome-Wide Identification of QTL for Seed Yield and Yield-Related Traits and Construction of a High-Density Consensus Map for QTL Comparison in Brassica napus vol.7, 2016, https://doi.org/10.3389/fpls.2016.00017
  10. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes vol.17, pp.1, 2016, https://doi.org/10.1186/s12863-016-0399-9
  11. Mutation ofSPOTTED LEAF3(SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice vol.66, pp.22, 2015, https://doi.org/10.1093/jxb/erv401
  12. Identification of a Novel QTL for Panicle Length From Wild Rice (Oryza minuta) by Specific Locus Amplified Fragment Sequencing and High Density Genetic Mapping vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01492
  13. Construction of A High-Density Genetic Map and Mapping of Fruit Traits in Watermelon (Citrullus Lanatus L.) Based on Whole-Genome Resequencing vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19103268
  14. Variance, Inter-Trait Correlation, Heritability, and Marker-Trait Association of Rubber Yield-Related Characteristics in Taraxacum kok-saghyz vol.36, pp.4, 2018, https://doi.org/10.1007/s11105-018-1097-8
  15. Development of sequence-based markers for seed protein content in pigeonpea pp.1617-4623, 2019, https://doi.org/10.1007/s00438-018-1484-8
  16. Evidence for Strong Kinship Influence on the Extent of Linkage Disequilibrium in Cultivated Common Beans vol.10, pp.1, 2019, https://doi.org/10.3390/genes10010005
  17. Mapping and Validation of Quantitative Trait Loci Associated with Tiller Production in Rice vol.55, pp.4, 2014, https://doi.org/10.2135/cropsci2014.09.0644
  18. QTLs for Early Tiller Production and Relationships with Rapid Seedling Growth and Increased Panicle Number in Rice vol.56, pp.2, 2014, https://doi.org/10.2135/cropsci2014.09.0667
  19. 벼의 이상적인 초형에 관여하는 QTL 분석 vol.30, pp.2, 2014, https://doi.org/10.7732/kjpr.2017.30.2.213
  20. Inclusive composite-interval mapping reveals quantitative trait loci for plant architectural traits in sorghum (Sorghum bicolor) vol.70, pp.8, 2019, https://doi.org/10.1071/cp18408
  21. Genetic mapping and development of molecular markers for a candidate gene locus controlling rind color in watermelon vol.132, pp.10, 2019, https://doi.org/10.1007/s00122-019-03384-3
  22. Genomic and transcriptomic analysis reveal molecular basis of salinity tolerance in a novel strong salt-tolerant rice landrace Changmaogu vol.12, pp.1, 2014, https://doi.org/10.1186/s12284-019-0360-4
  23. Stay-Green Trait: A Prospective Approach for Yield Potential, and Drought and Heat Stress Adaptation in Globally Important Cereals vol.20, pp.23, 2019, https://doi.org/10.3390/ijms20235837
  24. A major pleiotropic QTL identified for yield components and nitrogen content in rice ( Oryza sativa L.) under differential nitrogen field conditions vol.15, pp.10, 2020, https://doi.org/10.1371/journal.pone.0240854
  25. Genetic and genomic analysis for cocoon yield traits in silkworm vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-62507-9
  26. Detecting CSSLs and yield QTLs with additive, epistatic and QTL×environment interaction effects from Oryza sativa × O. nivara IRGC81832 cross vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-64300-0
  27. Importance of common bean genetic zinc biofortification in alleviating human zinc deficiency in sub-Saharan Africa vol.7, pp.1, 2014, https://doi.org/10.1080/23311932.2021.1907954
  28. QTLs and candidate genes analyses for fruit size under domestication and differentiation in melon (Cucumis melo L.) based on high resolution maps vol.21, pp.1, 2014, https://doi.org/10.1186/s12870-021-02904-y