• Title/Summary/Keyword: Q-difference

Search Result 736, Processing Time 0.025 seconds

PROPERTIES ON q-DIFFERENCE RICCATI EQUATION

  • Huang, Zhi-Bo;Zhang, Ran-Ran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1755-1771
    • /
    • 2018
  • In this paper, we investigate a certain type of q-difference Riccati equation in the complex plane. We prove that q-difference Riccati equation possesses a one parameter family of meromorphic solutions if it has three distinct meromorphic solutions. Furthermore, we find that all meromorphic solutions of q-difference Riccati equation and corresponding second order linear q-difference equation can be expressed by q-gamma function if this q-difference Riccati equation admits two distinct rational solutions and $q{\in}{\mathbb{C}}$ such that 0 < ${\mid}q{\mid}$ < 1. The growth and value distribution of differences of meromorphic solutions of q-difference Riccati equation are also treated.

A RESERCH ON NONLINEAR (p, q)-DIFFERENCE EQUATION TRANSFORMABLE TO LINEAR EQUATIONS USING (p, q)-DERIVATIVE

  • ROH, KUM-HWAN;LEE, HUI YOUNG;KIM, YOUNG ROK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.271-283
    • /
    • 2018
  • In this paper, we introduce various first order (p, q)-difference equations. We investigate solutions to equations which are linear (p, q)-difference equations and nonlinear (p, q)-difference equations. We also find some properties of (p, q)-calculus, exponential functions, and inverse function.

New Cyclic Relative Difference Sets Constructed from d-Homogeneous Functions with Difference-balanced Property (차균형성질을 갖는 d-동차함수로부터 생성된 새로운 순회상대차집합)

  • 김상효;노종선
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.11-20
    • /
    • 2002
  • In this paper, for many prime power q, it is shown that new cyclic relative difference sets with parameters (equation omitted) can be constructed by using d-homogeneous functions on $F_{q^{n}}${0} over $F_{q}$ with difference-balanced property, where $F_{q^{n} }$ is a finite field with $q^{n}$ elements. Several new cyclic relative difference sets with parameters (equation omitted) are constructed by using p-ary sequences of period $q^{n}$ -1 with ideal autocorrelation property introduced by Helleseth and Gong and d-form sequences.

VALUE DISTRIBUTION OF SOME q-DIFFERENCE POLYNOMIALS

  • Xu, Na;Zhong, Chun-Ping
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.29-38
    • /
    • 2016
  • For a transcendental entire function f(z) with zero order, the purpose of this article is to study the value distributions of q-difference polynomial $f(qz)-a(f(z))^n$ and $f(q_1z)f(q_2z){\cdots}f(q_mz)-a(f(z))^n$. The property of entire solution of a certain q-difference equation is also considered.

FINITE LOGARITHMIC ORDER SOLUTIONS OF LINEAR q-DIFFERENCE EQUATIONS

  • Wen, Zhi-Tao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.83-98
    • /
    • 2014
  • During the last decade, several papers have focused on linear q-difference equations of the form ${\sum}^n_{j=0}a_j(z)f(q^jz)=a_{n+1}(z)$ with entire or meromorphic coefficients. A tool for studying these equations is a q-difference analogue of the lemma on the logarithmic derivative, valid for meromorphic functions of finite logarithmic order ${\rho}_{log}$. It is shown, under certain assumptions, that ${\rho}_{log}(f)$ = max${{\rho}_{log}(a_j)}$ + 1. Moreover, it is illustrated that a q-Casorati determinant plays a similar role in the theory of linear q-difference equations as a Wronskian determinant in the theory of linear differential equations. As a consequence of the main results, it follows that the q-gamma function and the q-exponential functions all have logarithmic order two.

ON p, q-DIFFERENCE OPERATOR

  • Corcino, Roberto B.;Montero, Charles B.
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.537-547
    • /
    • 2012
  • In this paper, we define a $p$, $q$-difference operator and obtain an explicit formula which is used to express the $p$, $q$-analogue of the unified generalization of Stirling numbers and its exponential generating function in terms of the $p$, $q$-difference operator. Explicit formulas for the non-central $q$-Stirling numbers of the second kind and non-central $q$-Lah numbers are derived using the new $q$-analogue of Newton's interpolation formula. Moreover, a $p$, $q$-analogue of Newton's interpolation formula is established.

New Cyclic Difference Sets with Singer Parameters Constructed from d-Homogeneous Functions (d-동차함수로부터 생성된 Singer 파라미터를 갖는 새로운 순회차집합)

  • 노종선
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.1
    • /
    • pp.21-32
    • /
    • 2002
  • In this paper, for any prime q, new cyclic difference sets with Singer parameter equation omitted are constructed by using the q-ary sequences (d-homogeneous functions) of period $q_n$-1. When q is a power of 3, new cyclic difference sets with Singer parameter equation omitted are constructed from the ternary sequences of period $q_n$-1 with ideal autocorrealtion found by Helleseth, Kumar and Martinsen.

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M.;Hamza, Alaa E.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1141-1158
    • /
    • 2018
  • Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.