Acknowledgement
Supported by : KRF
References
- M. H. Abu-Risha, M. H. Annaby, M. E. H. Ismail, and Z. S. Mansour, Linear q-difference equations, Z. Anal. Anwend. 26 (2007), no. 4, 481-494.
- G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999.
- M. H. Annaby, A. E. Hamza, and K. A. Aldwoah, Hahn difference operator and associated Jackson-Norlund integrals, J. Optim. Theory Appl. 154 (2012), no. 1, 133-153. https://doi.org/10.1007/s10957-012-9987-7
- M. H. Annaby and Z. S. Mansour, q-Taylor and interpolation series for Jackson q- difference operators, J. Math. Anal. Appl. 344 (2008), no. 1, 472-483. https://doi.org/10.1016/j.jmaa.2008.02.033
- M. H. Annaby and Z. S. Mansour, q-fractional calculus and equations, Lecture Notes in Mathematics, 2056, Springer, Heidelberg, 2012.
- M. T. Bird, On generalizations of sum formulas of the Euler-MacLaurin type, Amer. J. Math. 58 (1936), no. 3, 487-503. https://doi.org/10.2307/2370965
- G. D. Birkhoff, General theory of linear difference equations, Trans. Amer. Math. Soc. 12 (1911), no. 2, 243-284. https://doi.org/10.1090/S0002-9947-1911-1500888-5
- R. D. Carmichael, Linear difference equations and their analytic solutions, Trans. Amer. Math. Soc. 12 (1911), no. 1, 99-134. https://doi.org/10.1090/S0002-9947-1911-1500883-6
- R. D. Carmichael, On the theory of linear difference equations, Amer. J. Math. 35 (1913), no. 2, 163-182. https://doi.org/10.2307/2370279
- G. Gasper and M. Rahman, Basic Hypergeometric Series, second edition, Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004.
- W. Hahn, Uber Orthogonalpolynome, die q-Differenzengleichungen genugen, Math. Nachr. 2 (1949), 4-34. https://doi.org/10.1002/mana.19490020103
- W. Hahn, Ein Beitrag zur Theorie der Orthogonalpolynome, Monatsh. Math. 95 (1983), no. 1, 19-24. https://doi.org/10.1007/BF01301144
- A. E. Hamza and M. M. Abdelkhaliq, Hahn difference equations in Banach algebras, Adv. Difference Equ. 2016 (2016), Paper No. 161, 25 pp. https://doi.org/10.1186/s13662-015-0703-4
- A. E. Hamza and S. M. Ahmed, Existence and uniqueness of solutions of Hahn difference equations, Adv. Difference Equ. 2013 (2013), 316, 15 pp.
- A. E. Hamza and S. D. Makharesh, Positive solutions of nonlinear Hahn difference equations, Adv. Dyn. Syst. Appl. 11 (2016), no. 2, 113-123.
- A. E. Hamza and K. M. Oraby, Stability of abstract dynamic equations on time scales, Adv. Difference Equ. 2012 (2012), 143, 15 pp.
- A. E. Hamza, A. S. Zaghrout, and S. M. Ahmed, Characterization of stability of first order Hahn difference equations, J. Adv. in Math. 5 (2013), 678-687.
- M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005.
- F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society Edinburgh 46 (1908), 253-281.
- F. H. Jackson, Basic integration, Quart. J. Math., Oxford Ser. (2) 2 (1951), 1-16. https://doi.org/10.1093/qmath/2.1.1
- D. L. Jagerman, Difference Equations with Applications to Queues, Monographs and Textbooks in Pure and Applied Mathematics, 233, Marcel Dekker, Inc., New York, 2000.
- C. Jordan, Calculus of Finite Differences, Third Edition. Introduction by Harry C. Carver, Chelsea Publishing Co., New York, 1965.
- T. H. Koornwinder, Special functions and q-commuting variables, in Special functions, q-series and related topics (Toronto, ON, 1995), 131-166, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997.
- K. H. Kwon, D. W. Lee, S. B. Park, and B. H. Yoo, Hahn class orthogonal polynomials, Kyungpook Math. J. 38 (1998), no. 2, 259-281.
- P. A. Lesky, Charakterisierung der q-Orthogonalpolynome in x, Monatsh. Math. 144 (2005), no. 4, 297-316. https://doi.org/10.1007/s00605-004-0275-y
-
J. Petronilho, Generic formulas for the values at the singular points of some special monic classical
$H_{q,{\omega}}$ -orthogonal polynomials, J. Comput. Appl. Math. 205 (2007), no. 1, 314-324. https://doi.org/10.1016/j.cam.2006.05.005 - E. C. Titchmarsh, The Theory of Functions, second edition, Oxford University Press, Oxford, 1939.
- K. Yosida, Functional Analysis, sixth edition, Grundlehren der Mathematischen Wissenschaften, 123, Springer-Verlag, Berlin, 1980.