DOI QR코드

DOI QR Code

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M. (Basic Science Department Pyramids Higher Institute for Engineering and Technology) ;
  • Hamza, Alaa E. (Department of Mathematics Faculty of Science University of Jeddah)
  • Received : 2017.03.31
  • Accepted : 2018.08.29
  • Published : 2018.10.31

Abstract

Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.

Keywords

Acknowledgement

Supported by : KRF

References

  1. M. H. Abu-Risha, M. H. Annaby, M. E. H. Ismail, and Z. S. Mansour, Linear q-difference equations, Z. Anal. Anwend. 26 (2007), no. 4, 481-494.
  2. G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999.
  3. M. H. Annaby, A. E. Hamza, and K. A. Aldwoah, Hahn difference operator and associated Jackson-Norlund integrals, J. Optim. Theory Appl. 154 (2012), no. 1, 133-153. https://doi.org/10.1007/s10957-012-9987-7
  4. M. H. Annaby and Z. S. Mansour, q-Taylor and interpolation series for Jackson q- difference operators, J. Math. Anal. Appl. 344 (2008), no. 1, 472-483. https://doi.org/10.1016/j.jmaa.2008.02.033
  5. M. H. Annaby and Z. S. Mansour, q-fractional calculus and equations, Lecture Notes in Mathematics, 2056, Springer, Heidelberg, 2012.
  6. M. T. Bird, On generalizations of sum formulas of the Euler-MacLaurin type, Amer. J. Math. 58 (1936), no. 3, 487-503. https://doi.org/10.2307/2370965
  7. G. D. Birkhoff, General theory of linear difference equations, Trans. Amer. Math. Soc. 12 (1911), no. 2, 243-284. https://doi.org/10.1090/S0002-9947-1911-1500888-5
  8. R. D. Carmichael, Linear difference equations and their analytic solutions, Trans. Amer. Math. Soc. 12 (1911), no. 1, 99-134. https://doi.org/10.1090/S0002-9947-1911-1500883-6
  9. R. D. Carmichael, On the theory of linear difference equations, Amer. J. Math. 35 (1913), no. 2, 163-182. https://doi.org/10.2307/2370279
  10. G. Gasper and M. Rahman, Basic Hypergeometric Series, second edition, Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004.
  11. W. Hahn, Uber Orthogonalpolynome, die q-Differenzengleichungen genugen, Math. Nachr. 2 (1949), 4-34. https://doi.org/10.1002/mana.19490020103
  12. W. Hahn, Ein Beitrag zur Theorie der Orthogonalpolynome, Monatsh. Math. 95 (1983), no. 1, 19-24. https://doi.org/10.1007/BF01301144
  13. A. E. Hamza and M. M. Abdelkhaliq, Hahn difference equations in Banach algebras, Adv. Difference Equ. 2016 (2016), Paper No. 161, 25 pp. https://doi.org/10.1186/s13662-015-0703-4
  14. A. E. Hamza and S. M. Ahmed, Existence and uniqueness of solutions of Hahn difference equations, Adv. Difference Equ. 2013 (2013), 316, 15 pp.
  15. A. E. Hamza and S. D. Makharesh, Positive solutions of nonlinear Hahn difference equations, Adv. Dyn. Syst. Appl. 11 (2016), no. 2, 113-123.
  16. A. E. Hamza and K. M. Oraby, Stability of abstract dynamic equations on time scales, Adv. Difference Equ. 2012 (2012), 143, 15 pp.
  17. A. E. Hamza, A. S. Zaghrout, and S. M. Ahmed, Characterization of stability of first order Hahn difference equations, J. Adv. in Math. 5 (2013), 678-687.
  18. M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005.
  19. F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society Edinburgh 46 (1908), 253-281.
  20. F. H. Jackson, Basic integration, Quart. J. Math., Oxford Ser. (2) 2 (1951), 1-16. https://doi.org/10.1093/qmath/2.1.1
  21. D. L. Jagerman, Difference Equations with Applications to Queues, Monographs and Textbooks in Pure and Applied Mathematics, 233, Marcel Dekker, Inc., New York, 2000.
  22. C. Jordan, Calculus of Finite Differences, Third Edition. Introduction by Harry C. Carver, Chelsea Publishing Co., New York, 1965.
  23. T. H. Koornwinder, Special functions and q-commuting variables, in Special functions, q-series and related topics (Toronto, ON, 1995), 131-166, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997.
  24. K. H. Kwon, D. W. Lee, S. B. Park, and B. H. Yoo, Hahn class orthogonal polynomials, Kyungpook Math. J. 38 (1998), no. 2, 259-281.
  25. P. A. Lesky, Charakterisierung der q-Orthogonalpolynome in x, Monatsh. Math. 144 (2005), no. 4, 297-316. https://doi.org/10.1007/s00605-004-0275-y
  26. J. Petronilho, Generic formulas for the values at the singular points of some special monic classical $H_{q,{\omega}}$-orthogonal polynomials, J. Comput. Appl. Math. 205 (2007), no. 1, 314-324. https://doi.org/10.1016/j.cam.2006.05.005
  27. E. C. Titchmarsh, The Theory of Functions, second edition, Oxford University Press, Oxford, 1939.
  28. K. Yosida, Functional Analysis, sixth edition, Grundlehren der Mathematischen Wissenschaften, 123, Springer-Verlag, Berlin, 1980.