• Title/Summary/Keyword: Q·f0.

Search Result 662, Processing Time 0.029 seconds

SOME RESULTS ON UNIQUENESS OF MEROMORPHIC SOLUTIONS OF DIFFERENCE EQUATIONS

  • Gao, Zong Sheng;Wang, Xiao Ming
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.959-970
    • /
    • 2017
  • In this paper, we investigate the transcendental meromorphic solutions with finite order of two different types of difference equations $${\sum\limits_{j=1}^{n}}a_jf(z+c_j)={\frac{P(z,f)}{Q(z,f)}}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ and $${\prod\limits_{j=1}^{n}}f(z+c_j)={\frac{P(z,f)}{Q(z,f)}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ that share three distinct values with another meromorphic function. Here $a_j$, $b_k$, $d_l$ are small functions of f and $a_j{\not{\equiv}}(j=1,2,{\ldots},n)$, $b_p{\not{\equiv}}0$, $d_q{\not{\equiv}}0$. $c_j{\neq}0$ are pairwise distinct constants. p, q, n are non-negative integers. P(z, f) and Q(z, f) are two mutually prime polynomials in f.

THE COMPUTATION METHOD OF THE MILNOR NUMBER OF HYPERSURFACE SINGULARITIES DEFINED BY AN IRREDUCIBLE WEIERSTRASS POLYNOMIAL $z^n$+a(x,y)z+b(x,y)=0 in $C^3$ AND ITS APPLICATION

  • Kang, Chung-Hyuk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.169-173
    • /
    • 1989
  • Let V={(x,y,z):f=z$^{n}$ -npz+(n-1)q=0 for n .geq. 3} be a compled analytic subvariety of a polydisc in $C^{3}$ where p=p(x,y) and q=q(x,y) are holomorphic near (x,y)=(0,0) and f is an irreducible Weierstrass polynomial in z of multiplicity n. Suppose that V has an isolated singular point at the origin. Recall that the z-discriminant of f is D(f)=c(p$^{n}$ -q$^{n-1}$) for some number c. Suppose that D(f) is square-free. then we prove that by Theorem 2.1 .mu.(p$^{n}$ -q$^{n-1}$)=.mu.(f)-(n-1)+n(n-2)I(p,q)+1 where .mu.(f), .mu. p$^{n}$ -q$^{n-1}$are the corresponding Milnor numbers of f, p$^{n}$ -q$^{n-1}$, respectively and I(p,q) is the intersection number of p and q at the origin. By one of applications suppose that W$_{t}$ ={(x,y,z):g$_{t}$ =z$^{n}$ -np$_{t}$ $^{n-1}$z+(n-1)q$_{t}$ $^{n-1}$=0} is a smooth family of complex analytic varieties near t=0 each of which has an isolated singularity at the origin, satisfying that the z-discriminant of g$_{t}$ , that is, D(g$_{t}$ ) is square-free. If .mu.(g$_{t}$ ) are constant near t=0, then we prove that the family of plane curves, D(g$_{t}$ ) are equisingular and also D(f$_{t}$ ) are equisingular near t=0 where f$_{t}$ =z$^{n}$ -np$_{t}$ z+(n-1)q$_{t}$ =0.}$ =0.

  • PDF

A RESULT ON AN OPEN PROBLEM OF LÜ, LI AND YANG

  • Majumder, Sujoy;Saha, Somnath
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.915-937
    • /
    • 2021
  • In this paper we deal with the open problem posed by Lü, Li and Yang [10]. In fact, we prove the following result: Let f(z) be a transcendental meromorphic function of finite order having finitely many poles, c1, c2, …, cn ∈ ℂ\{0} and k, n ∈ ℕ. Suppose fn(z), f(z+c1)f(z+c2) ⋯ f(z+cn) share 0 CM and fn(z)-Q1(z), (f(z+c1)f(z+c2) ⋯ f(z+cn))(k) - Q2(z) share (0, 1), where Q1(z) and Q2(z) are non-zero polynomials. If n ≥ k+1, then $(f(z+c_1)f(z+c_2)\;{\cdots}\;f(z+c_n))^{(k)}\;{\equiv}\;{\frac{Q_2(z)}{Q_1(z)}}f^n(z)$. Furthermore, if Q1(z) ≡ Q2(z), then $f(z)=c\;e^{\frac{\lambda}{n}z}$, where c, λ ∈ ℂ \ {0} such that eλ(c1+c2+⋯+cn) = 1 and λk = 1. Also we exhibit some examples to show that the conditions of our result are the best possible.

NEW BANACH SPACES DEFINED BY THE DOMAIN OF RIESZ-FIBONACCI MATRIX

  • Alp, Pinar Zengin;Kara, Emrah Evren
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.665-677
    • /
    • 2021
  • The main object of this study is to introduce the spaces $c_0({\hat{F}^q)$ and $c({\hat{F}^q)$ derived by the matrix ${\hat{F}^q$ which is the multiplication of Riesz matrix and Fibonacci matrix. Moreover, we find the 𝛼-, 𝛽-, 𝛾- duals of these spaces and give the characterization of matrix classes (${\Lambda}({\hat{F}^q)$, Ω) and (Ω, ${\Lambda}({\hat{F}^q)$) for 𝚲 ∈ {c0, c} and Ω ∈ {ℓ1, c0, c, ℓ}.

A RESULT ON A CONJECTURE OF W. LÜ, Q. LI AND C. YANG

  • Majumder, Sujoy
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.411-421
    • /
    • 2016
  • In this paper, we investigate the problem of transcendental entire functions that share two values with one of their derivative. Let f be a transcendental entire function, n and k be two positive integers. If $f^n-Q_1$ and $(f^n)^{(k)}-Q_2$ share 0 CM, and $n{\geq}k+1$, then $(f^n)^{(k)}{\equiv}{\frac{Q_2}{Q_1}}f^n$. Furthermore, if $Q_1=Q_2$, then $f=ce^{\frac{\lambda}{n}z}$, where $Q_1$, $Q_2$ are polynomials with $Q_1Q_2{\not\equiv}0$, and c, ${\lambda}$ are non-zero constants such that ${\lambda}^k=1$. This result shows that the Conjecture given by W. $L{\ddot{u}}$, Q. Li and C. Yang [On the transcendental entire solutions of a class of differential equations, Bull. Korean Math. Soc. 51 (2014), no. 5, 1281-1289.] is true. Also we exhibit some examples to show that the conditions of our result are the best possible.

LOCAL PERMUTATION POLYNOMIALS OVER FINITE FIELDS

  • Lee, Jung-Bok;Ko, Hyoung-June
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.539-545
    • /
    • 1994
  • Let $q = p^r$, where p is a prime. A polynomial $f(x) \in GF(q)[x]$ is called a permutation polynomial (PP) over GF(q) if the numbers f(a) where $a \in GF(Q)$ are a permutation of the a's. In other words, the equation f(x) = a has a unique solution in GF(q) for each $a \in GF(q)$. More generally, $f(x_1, \cdots, x_n)$ is a PP in n variables if $f(x_1,\cdots,x_n) = \alpha$ has exactly $q^{n-1}$ solutions in $GF(q)^n$ for each $\alpha \in GF(q)$. Mullen ([3], [4], [5]) has studied the concepts of local permutation polynomials (LPP's) over finite fields. A polynomial $f(x_i, x_2, \cdots, x_n) \in GF(q)[x_i, \codts,x_n]$ is called a LPP if for each i = 1,\cdots, n, f(a_i,\cdots,x_n]$ is a PP in $x_i$ for all $a_j \in GF(q), j \neq 1$.Mullen ([3],[4]) found a set of necessary and three variables over GF(q) in order that f be a LPP. As examples, there are 12 LPP's over GF(3) in two indeterminates ; $f(x_1, x_2) = a_{10}x_1 + a_{10}x_2 + a_{00}$ where $a_{10} = 1$ or 2, $a_{01} = 1$ or x, $a_{00} = 0,1$, or 2. There are 24 LPP's over GF(3) of three indeterminates ; $F(x_1, x_2, x_3) = ax_1 + bx_2 +cx_3 +d$ where a,b and c = 1 or 2, d = 0,1, or 2.

  • PDF

Polynomials satisfying f(x-a)f(x)+c over finite fields

  • Park, Hong-Goo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.277-283
    • /
    • 1992
  • Let GF(q) be a finite field with q elements where q=p$^{n}$ for a prime number p and a positive integer n. Consider an arbitrary function .phi. from GF(q) into GF(q). By using the Largrange's Interpolation formula for the given function .phi., .phi. can be represented by a polynomial which is congruent (mod x$^{q}$ -x) to a unique polynomial over GF(q) with the degree < q. In [3], Wells characterized all polynomial over a finite field which commute with translations. Mullen [2] generalized the characterization to linear polynomials over the finite fields, i.e., he characterized all polynomials f(x) over GF(q) for which deg(f) < q and f(bx+a)=b.f(x) + a for fixed elements a and b of GF(q) with a.neq.0. From those papers, a natural question (though difficult to answer to ask is: what are the explicit form of f(x) with zero terms\ulcorner In this paper we obtain the exact form (together with zero terms) of a polynomial f(x) over GF(q) for which satisfies deg(f) < p$^{2}$ and (1) f(x+a)=f(x)+c for the fixed nonzero elements a and c in GF(q).

  • PDF

NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE

  • Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.393-402
    • /
    • 2013
  • For 0 < $p$ < ${\infty}$, ${\alpha}$ > -1 and 0 < $r$ < 1, we show that if $f$ is in the space of Dirichlet type $\mathfrak{D}^p_{p-1}$, then ${\int}_{1}^{0}M_{p}^{p}(r,f^{\prime})(1-r)^{p-1}rdr$ < ${\infty}$ and ${\int}_{1}^{0}M_{(2+{\alpha})p}^{(2+{\alpha})p}(r,f^{\prime})(1-r)^{(2+{\alpha})p+{\alpha}}rdr$ < ${\infty}$ where $M_p(r,f)=\[\frac{1}{2{\pi}}{\int}_{0}^{2{\pi}}{\mid}f(re^{it}){\mid}^pdt\]^{1/p}$. For 1 < $p$ < $q$ < ${\infty}$ and ${\alpha}+1$ < $p$, we show that if there exists some positive constant $c$ such that ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathfrak{D}^p_{\alpha}}$ for all $f{\in}\mathfrak{D}^p_{\alpha}$, then ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathcal{B}_p(q)}$ where $\mathcal{B}_p(q)$ is the weighted Besov space. We also find the condition of measure ${\mu}$ such that ${\sup}_{a{\in}D}{\int}_D(k_a(z)(1-{\mid}a{\mid}^2)^{(p-a-1)})^{q/p}d{\mu}(z)$ < ${\infty}$.

WEIGHTED COMPOSITION OPERATORS FROM F(p, q, s) INTO LOGARITHMIC BLOCH SPACE

  • Ye, Shanli
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.977-991
    • /
    • 2008
  • We characterize the boundedness and compactness of the weighted composition operator $uC_{\psi}$ from the general function space F(p, q, s) into the logarithmic Bloch space ${\beta}_L$ on the unit disk. Some necessary and sufficient conditions are given for which $uC_{\psi}$ is a bounded or a compact operator from F(p,q,s), $F_0$(p,q,s) into ${\beta}_L$, ${\beta}_L^0$ respectively.

Convex hulls and extreme points of families of symmetric univalent functions

  • Hwang, J.S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Earlier in 1935[12], M. S. Robertson introduced the class of quadrant preserving functions. More precisely, let Q be the class of all functions f(z) analytic in the unit disk $D = {z : $\mid$z$\mid$ < 1}$ such that f(0) = 0, f'(0) = 1, and the range f(z) is in the j-th quadrant whenever z is in the j-th quadrant of D, j = 1,2,3,4. This class Q contains the subclass of normalized, odd univalent functions which have real coefficients. On the other hand, this class Q is contained in the class T of odd typically real functions which was introduced by W. Rogosinski [13]. Clearly, if $f \in Q$, then f(z) is real when z is real and therefore the coefficients of f are all real. Recently, it was observed by Y. Abu-Muhanna and T. H. MacGregor [1] that any function $f \in Q$ is odd. Instead of functions "preserving quadrants", the authors [1] have introduced the notion of "preserving sectors".

  • PDF