DOI QR코드

DOI QR Code

SOME RESULTS ON UNIQUENESS OF MEROMORPHIC SOLUTIONS OF DIFFERENCE EQUATIONS

  • Gao, Zong Sheng (LMIB and School of Mathematics and Systems Science Beihang University) ;
  • Wang, Xiao Ming (LMIB and School of Mathematics and Systems Science Beihang University)
  • Received : 2017.01.04
  • Accepted : 2017.07.28
  • Published : 2017.10.31

Abstract

In this paper, we investigate the transcendental meromorphic solutions with finite order of two different types of difference equations $${\sum\limits_{j=1}^{n}}a_jf(z+c_j)={\frac{P(z,f)}{Q(z,f)}}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ and $${\prod\limits_{j=1}^{n}}f(z+c_j)={\frac{P(z,f)}{Q(z,f)}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ that share three distinct values with another meromorphic function. Here $a_j$, $b_k$, $d_l$ are small functions of f and $a_j{\not{\equiv}}(j=1,2,{\ldots},n)$, $b_p{\not{\equiv}}0$, $d_q{\not{\equiv}}0$. $c_j{\neq}0$ are pairwise distinct constants. p, q, n are non-negative integers. P(z, f) and Q(z, f) are two mutually prime polynomials in f.

Keywords

References

  1. G. Brosch, Eindeutigkeissatze fur Meromorphe Funktionen, Dissertation, Technical University of Aachen, 1989.
  2. Y.-M. Chiang and S.-J. Feng, On the Nevanlinna characteristic of f(z+$\eta$) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129. https://doi.org/10.1007/s11139-007-9101-1
  3. R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487. https://doi.org/10.1016/j.jmaa.2005.04.010
  4. W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
  5. J. Heittokangas et al., Complex difference equations of Malmquist type, Comput. Methods Funct. Theory 1 (2001), no. 1, [On table of contents: 2002], 27-39. https://doi.org/10.1007/BF03320974
  6. I. Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, 15, Walter de Gruyter & Co., Berlin, 1993.
  7. I. Laine and C.-C. Yang, Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc. (2) 76 (2007), no. 3, 556-566. https://doi.org/10.1112/jlms/jdm073
  8. F. Lu, Q. Han, and W. Lu, On unicity of meromorphic solutions to difference equations of Malmquist type, Bull. Aust. Math. Soc. 93 (2016), no. 1, 92-98. https://doi.org/10.1017/S0004972715000787
  9. C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
  10. L. Yang, Value Distribution Theory and New Research, Science Press, Beijing, 1982 (in Chinese).