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THE COMPUTATION METHOD OF THE MILNOR NUMBER
OF HYPERSURFACE SINGULARITIES DEFINED BY
AN IRREDUCIBLE WEIERSTRASS POLYNOMIAL z»+

a(x,y)z+b(x,y)=0 in C° AND ITS APPLICATION

CHungHYUK KAng

Introduction

Let V={(z,5,2) : f=2"—npz+ (a—1)g=0 for n>3} be a complex
analytic subvariety of a polydisc in C® where p=p(z, y) and ¢=¢(x, y)
are holomorphic near (z,»)=(0,0) and f is an irreducible Weierstrass
polynomial in z of multiplicity 7. Suppose that V has an isolated
singular point at the origin. Recall that the z-discriminant of £ is
D(f)=c(p"—qg* ") for some number ¢. Suppose that D(f) is square-
free. Then we prove that by Theorem 2.1 p(p*—¢" ) =u(f) — (n—1)
+n(n—2)I(p,q)+1 where u(f), p(p"—qg* 1) are the corresponding
Milnor numbers of £, p"—q¢"~1, respectively and 7(p, ¢) is the intersec-
tion number of p and g at the origin. By one of applications suppose
that W,= {(, », 2) : g;=2"—np," lz+ (n—1)q"1==0} is a smooth family
of complex analytic varieties near t=0 each of which has an isolated
singularity at the origin, satisfying that the z-discriminant of g,, that
is, D(g,) is square-free. If u(g,) are constant near z=0, then we
prove that the family of plane curves, D(g,) are equisingular and also
D(f,) are equisingular near t=0 where f,=z"—np,z-+(n—1)q,=0.

1. Preliminaries

Let O, be the ring of germs of holomorphic functions near the origin
in C". Let £: (C",0) — (C,0) be a germ at the origin of holomorphic
function with an isolated singular point. The Milnor number of f is

defined by the dimension of O,/ (%—, ey %5—) as a finite dimensional C-
“1 n

vector space and it is denoted by p(f). Let ¢,(J) be defined by the
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dimension of O,/J as a finite dimensional C-vector space where J=
(f1y -+ fu) 1s an ideal in O, generated by fi, ..., f.

Tueorem 1. 1. Let V= {(x, 5, 2) : f=2"+a;z" 1+ .. +az""+...+a,=
0} be a complex analytic subvariety of a polydisc near the origin in C*
where the a;—a;(z,y) are holomorphic near (z,v)=(0,0) and f is a
Weierstrass polynomial in = of multiplicity n. Suppose that the origin
in C° is an isolated singular point of V and that the z—discriminant of
f, denoted by D(f), is square—free. Then we have

(D) =p(f)—(n—1)+2k(f)+36(f)+1

where ¢(f) =e3(f, %J;—, Bf) and 2k(f) =ey(J) such that J is an ideal

4 o . ’
in 04 ge”erated by f(x’ y’ z)’ f,z('ra y’ 21>’ f Z(I’ y, ~2) f Z(x’ y, 21>
22Xy
1

and L @32 = f () — I 2

22)]} with respect to coordinates x, y, z;, Za.
Proof. See [[1], Proposition 1.1, p.263].

2. The computation method of the Milnor number of hypersur-
face singularities defined by z*—npz+ (n—1)¢:=0 with some con-
dition

TueoreM 2.1. Let V= {(z,y,2) : f=2"—npz+ (n—1)g=0 for n>3}
be a complex subvariety of a polydisc in C° where p=p(x,y) and g=
g(z, y) are holomorphic near (z,y)=1(0,0) and f is a Weierstrass poly-
nomial in z of multiplicity n. Suppose that the origin in C° is an isolated
singular point of V. Then the z—discriminant of f is D(f)=c(pr—g* 1)
Sfor some number c. Suppose that D(f) is square—free. Then we have
the following:

p(pr—g D) =pu(f)— (=1 +a(r—2)I(p. q) +1
where I1(p, ¢) =dim O,/ (p, q) as a C-vector space.

Proof. By Theorem 1.1, it is enough to compute 2k(f) and 3¢(f)
for this f. The ideal (f, f., fe)=(Z"2% p,q). Thus ¢(f)=
dim O/ (f, fo for) =dimO/ (2772, p, ¢) = (n—2)1(p, g). Now by Theorem
1.1, let us calculate four generators of the ideal J for 2&(f), in order
to prove that 2k(f)=(n—2) (n—3)1(p, q) for n>3:

(1) f(z, 3, 21) =z"—npz+ (n—1)q
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(2) fo(z, 3, 21) =nzi" L —np=n(z" 1 —p)
(3) Let a(z, &) =4 =& ¥ 2) —f:(x,p,2)
X1TT R
Then for z %2y, (z1—2)alzy, 22)=[(nz"! — up) — (nzs" ' — np) ]
:71(:171—1_:271—1). So a(zy, 20) =n (2" 2427 350 = ...+ 297 2),
(4) Let b(zy, z) :—C;;lz—‘og[f (a2, 3, 20) — f(a, 21) M%(f’z(x,
¥, =) Ff (2, 9, 22))]. Then for =y # 25, (22—21)% (21, 22) = (20" —np2at+

pad

(1=Dg) = (' —nprr+ (n—1)g) — Z 5 (ney™ —nptnzy™ —np) = (z2

=) (227 2 L T L) —%* (22— 21) (n2" 14 negyn
—2np) :—%— (22— 21) [(2—m) 2" 14207 22 oo+ Zpzy P24 (2—n) 271,
Thus 2(z — 2)2(2), 2) = (2 — )21 + 227 22, + ... + 222" 2 +
(2—n)z;" 1. Now

(z1729) a2y, 22) —2n(2a—21)2b (21, ) =n(n—1) (,*" 1 + ) e J.
Also, since (z;—=22)a(zy, 25) gives that 27 1=z 1G], 277), gt le .
Since =" 1&J, p and ¢ are in J from two equations (1) and 2.

a(z), z2) and &(x), =) are relatively prime in a ring of convergent
power series of z;, 25, then we know that dm O,/ (a(zy, 22), b(zy, 22))
=(n—2) (n—3) since a(z, 2») and b(zy, 2,) are homogeneous polyno-
mials in zy, 2, of degree n—2 and n—3, respectively. Therefore 2k(F)
=dim O,/ J=(n--2) (n—3)1(p, ¢ where I(p, ¢) is the intersection
number dim O,/ (p,q) as a C-vector space. Then 3¢(f)+2k(f)=
[3(n—2)+(n—=2) (n—3)]I(p, @) =n(n—2) I(p ¢). Let us prove that
a(zy, =2) and b(2y, z,) have no common factor in a ring of convergent
power series of 2y, zo. Now a(2y, 25) =n(2a— w2y ... (22— w,-0%;), wWhere
wp=e>*/7"1 for k=1, ...,n—2. Replacing 2, by wz,, then 2(zy — 21)2%
(21, 22) = (2—n) 2" L—nz;" 1= (2—2r) ;"L Since n>>1, a(z;, 22) and
b(zy1, z2) have no common factor in O,.

3. Some application

Dermvition 3. 1. Let V={(y,2) : f(3,2)=0} and W={(3,2) : g(, 2)
=0} be germs of analytic varieties of a polydisc in C* where f, g
are holomorphic and square-free near the origin and the origin is
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an isolated singular point of V and W, both. V and W are said to
be topologically equivalent or equisingular if there exists a germ at the
origin of homeomorphism ¢ : (U;, 0) — (U, 0) such that d(V)Y=W
and ¢(0) =0 where U, and U, are open subsets containing the origin
in C% In this case, we call f(y,2) and g(y, =) topclogically equivalent
or equisingular.

Lemva 3.2 (A generalization of Milnor’s Theorem). Let F(z, y) be
Fy-Fy--Fy where F; is a plane curve with only stngularities at the origin

k
in C* and F; may be reducible. Then u(F) =3 n(F)+2% I(F;, F))
i=1 i<y

—k+1 where each I(F;, F;) is the intersection number of F; and F; at
the origin for i+ 7.

Tueorem 3.3. Let V,={(z, 3, 2) : g,=2" — np," Ls+ (n—1) g 1=0}
be a smooth family of complex analytic varieties of a polydisc in C?
where p,=p(z,y,t) and q,=q(z, y,t) are holomorphic near (z, y) =0, 0)
and smooth near t=0, and g, is a Weierstrass polynomial in = of
multiplicity n at the origin in C®. Suppose that the origin in C° is an
isolated singular point of U, and the z-discriminant of g, D(g)), is
square—free for each t. Suppose that the Milnor number 11(g,) are cons-
tant for all t near 0. Then u(D(g,)) are constant for such all t.
Moreover, if fi=z"—np,z+ (n—1)q,=0 and u(g,) are constant for such
t with the same assumption as above, then u(D(f,)) are constant, too.

Proof. By Theorem 2.1, u(D(g,)) =p(g)— (n—1)+n(n—2)I(p 7L,
¢." 1) +1. But p(D(g))=p(p " —q,70%) =u(pr—wg )+ +
(P — 1Y) +2-,01CoI ()7, g7 1) — (n—1) +1 where w; is a root of
an equation ¢"'=1, by Lemma 3.2. So p(p,"—wg 1) +...+u(p?—
w,19""") =p(g,) for all ¢ near 0. Since p(g,) are constant and g is
nonnegative and upper semi-continuous, for each fixed i u(p,”—w;g," )
is constant and so p/+w;g,”"! is equisingular near =0 by [3]. Consi-
der the family W,={(x,5,2) : f,=2"—np,z+ (n—1) q,=0}. Then the
z-discriminant for f,, D(f,) is equisingular near #=0 because w; may
be equal to one for some j. Since u(p*—g " 1) =pu(f,) — (n—1) +n(n—
2)I(p1, q:)+1 for some w;=1 and g (p,"—g,""1) is constant then x(f,)
is constant and also I(p,, g,) is constant near t=0. Therefore, then fact
that I(p, q,) is constant near t=0 implies that x(D(g,)) is constant
for such z.
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