THE COMPUTATION METHOD OF THE MILNOR NUMBER OF HYPERSURFACE SINGULARITIES DEFINED BY AN IRREDUCIBLE WEIERSTRASS POLYNOMIAL $z^n + a(x, y)z + b(x, y) = 0$ in C^3 AND ITS APPLICATION

Chunghyuk Kang

Introduction

Let $V = \{(x, y, z) : f = z^n - npz + (n-1)q = 0 \text{ for } n \ge 3\}$ be a complex analytic subvariety of a polydisc in C^3 where p = p(x, y) and q = q(x, y)are holomorphic near (x, y) = (0, 0) and f is an irreducible Weierstrass polynomial in z of multiplicity n. Suppose that V has an isolated singular point at the origin. Recall that the z-discriminant of f is $D(f) = c(p^n - q^{n-1})$ for some number c. Suppose that D(f) is squarefree. Then we prove that by Theorem 2.1 $\mu(p^n-q^{n-1})=\mu(f)-(n-1)$ +n(n-2)I(p,q)+1 where $\mu(f)$, $\mu(p^n-q^{n-1})$ are the corresponding Milnor numbers of f, $p^n - q^{n-1}$, respectively and I(p,q) is the intersection number of p and q at the origin. By one of applications suppose that $W_t = \{(x, y, z) : g_t = z^n - np_t^{n-1}z + (n-1)q_t^{n-1} = 0\}$ is a smooth family of complex analytic varieties near t=0 each of which has an isolated singularity at the origin, satisfying that the z-discriminant of g_t , that is, $D(g_t)$ is square-free. If $\mu(g_t)$ are constant near t=0, then we prove that the family of plane curves, $D(g_t)$ are equisingular and also $D(f_t)$ are equisingular near t=0 where $f_t=z^n-np_tz+(n-1)q_t=0$.

1. Preliminaries

Let O_n be the ring of germs of holomorphic functions near the origin in \mathbb{C}^n . Let $f:(\mathbb{C}^n,0)\to (\mathbb{C},0)$ be a germ at the origin of holomorphic function with an isolated singular point. The Milnor number of f is defined by the dimension of $O_n/\left(\frac{\partial f}{\partial z_1},\ldots,\frac{\partial f}{\partial z_n}\right)$ as a finite dimensional \mathbb{C} -vector space and it is denoted by $\mu(f)$. Let $e_n(J)$ be defined by the

Received November 4, 1988.

Supported by Korean Science and Engineering Foundation, 1987-1988.

dimension of O_n/J as a finite dimensional C-vector space where $J = (f_1, ..., f_n)$ is an ideal in O_n generated by $f_1, ..., f_n$.

THEOREM 1. 1. Let $V = \{(x, y, z) : f = z^n + a_1 z^{n-1} + ... + a_i z^{n-i} + ... + a_n = 0\}$ be a complex analytic subvariety of a polydisc near the origin in \mathbb{C}^3 where the $a_i = a_i(x, y)$ are holomorphic near (x, y) = (0, 0) and f is a Weierstrass polynomial in z of multiplicity n. Suppose that the origin in \mathbb{C}^3 is an isolated singular point of V and that the z-discriminant of f, denoted by D(f), is square-free. Then we have

$$\mu(D) = \mu(f) - (n-1) + 2k(f) + 3\phi(f) + 1$$

where $\phi(f) = e_3(f, \frac{\partial f}{\partial z}, \frac{\partial^2 f}{\partial z^2})$ and $2k(f) = e_4(J)$ such that J is an ideal in O_4 generated by f(x, y, z), $f'_z(x, y, z_1)$, $\frac{f'_z(x, y, z_2) - f'_z(x, y, z_1)}{z_2 - z_1}$ and $\frac{1}{(z_2 - z_1)^3} \{ f(x, y, z_2) - f(x, y, z_1) - \frac{z_2 - z_1}{2} [f'_z(x, y, z_1) + f'_z(x, y, z_2) - f(x, y, z_2)] \}$

and $\frac{1}{(z_2-z_1)^3} \{f(x, y, z_2) - f(x, y, z_1) - \frac{z_2-z_1}{2} \lfloor f'_z(x, y, z_1) + f'_z(x, z_2) \}$ with respect to coordinates x, y, z_1, z_2 .

Proof. See [[1], Proposition 1.1, p. 263].

2. The computation method of the Milnor number of hypersurface singularities defined by $z^n-npz+(n-1)q=0$ with some condition

THEOREM 2.1. Let $V = \{(x, y, z) : f = z^n - npz + (n-1)q = 0 \text{ for } n \geq 3\}$ be a complex subvariety of a polydisc in \mathbb{C}^3 where p = p(x, y) and q = q(x, y) are holomorphic near (x, y) = (0, 0) and f is a Weierstrass polynomial in z of multiplicity n. Suppose that the origin in \mathbb{C}^3 is an isolated singular point of V. Then the z-discriminant of f is $D(f) = c(p^n - q^{n-1})$ for some number c. Suppose that D(f) is square-free. Then we have the following:

$$\mu(p^n-q^{n-1}) = \mu(f) - (n-1) + n(n-2)I(p,q) + 1$$
 where $I(p,q) = \dim O_2/(p,q)$ as a C-vector space.

Proof. By Theorem 1.1, it is enough to compute 2k(f) and $3\phi(f)$ for this f. The ideal $(f, f_z, f_{zz}) = (Z^{n-2}, p, q)$. Thus $\phi(f) = \dim O/(f, f_z, f_{zz}) = \dim O/(z^{n-2}, p, q) = (n-2)I(p, q)$. Now by Theorem 1.1, let us calculate four generators of the ideal J for 2k(f), in order to prove that 2k(f) = (n-2)(n-3)I(p,q) for $n \ge 3$:

(1)
$$f(x, y, z_1) = z_1^n - npz_1 + (n-1)q$$

The computation method of the Milnor number of hypersurface singularities 171 defined by an irreducible Weierstrass polynomial $z^n + a(x, y)z + b(x, y) = 0$ in C^3 and its application

(2)
$$f'_z(x, y, z_1) = nz_1^{n-1} - np = n(z_1^{n-1} - p)$$

(3) Let
$$a(z_1, z_2) = \frac{f'_z(x, y, z_1) - f'_z(x, y, z_2)}{z_1 - z_2}$$

Then for $z_1 \neq z_2$, $(z_1 - z_2) a(z_1, z_2) = [(nz_1^{n-1} - np) - (nz_2^{n-1} - np)]$ = $n(z_1^{n-1} - z_2^{n-1})$. So $a(z_1, z_2) = n(z_1^{n-2} + z_1^{n-3}z_2 + ... + z_2^{n-2})$.

(4) Let
$$b(z_1, z_2) = \frac{1}{(z_2 - z_1)^3} [f(x, y, z_2) - f(x, y, z_1) - \frac{z_2 - z_1}{2} (f'_z(x, y, z_1) + f'_z(x, y, z_2))]$$
. Then for $z_1 \neq z_2$, $(z_2 - z_1)^3 b(z_1, z_2) = (z_2^n - npz_2 + (n-1)q) - (z_1^n - npz_1 + (n-1)q) - \frac{z_2 - z_1}{2} (nz_1^{n-1} - np + nz_2^{n-1} - np) = (z_2 - z_1) (z_2^{n-1} + z_2^{n-2}z_1 + \dots + z_2z_1^{n-2} + z_1^{n-1} - np) - \frac{1}{2} (z_2 - z_1) (nz_1^{n-1} + nz_2^{n-1} - 2np) = \frac{1}{2} (z_2 - z_1) [(2-n)z_2^{n-1} + 2z_2^{n-2}z_1 + \dots + 2z_2z_1^{n-2} + (2-n)z_1^{n-1}].$ Thus $2(z_2 - z_1)^2 b(z_1, z_2) = (2-n)z_2^{n-1} + 2z_2^{n-2}z_1 + \dots + 2z_2z_1^{n-2} + (2-n)z_1^{n-1}$. Now

 $(z_1+z_2)a(z_1,z_2)-2n(z_2-z_1)^2b(z_1,z_2)=n(n-1)(z_1^{n-1}+z_2^{n-1})\in J.$ Also, since $(z_1-z_2)a(z_1,z_2)$ gives that $z_1^{n-1}-z_2^{n-1} \in J$, $z_1^{n-1}, z_2^{n-1} \in J$. Since $z_1^{n-1} \in J$, p and q are in J from two equations (1) and (2). Therefore $J=(a(z_1,z_2),b(z_1,z_2),p,q)$ is in O_4 . Now if we prove that $a(z_1, z_2)$ and $b(z_1, z_2)$ are relatively prime in a ring of convergent power series of z_1, z_2 , then we know that dm $O_2/(a(z_1, z_2), b(z_1, z_2))$ =(n-2)(n-3) since $a(z_1, z_2)$ and $b(z_1, z_2)$ are homogeneous polynomials in z_1, z_2 of degree n-2 and n-3, respectively. Therefore 2k(f)=dim O_4/J =(n-2)(n-3)I(p, q) where I(p, q) is the intersection number dim $O_2/(p,q)$ as a **C**-vector space. Then $3\phi(f)+2k(f)=$ [3(n-2)+(n-2)(n-3)]I(p, q)=n(n-2)I(p, q). Let us prove that $a(z_1, z_2)$ and $b(z_1, z_2)$ have no common factor in a ring of convergent power series of z_1 , z_2 . Now $a(z_1, z_2) = n(z_2 - \omega_1 z_1) \dots (z_2 - \omega_{n-2} z_1)$, where $\omega_k = e^{2\pi k/n-1}$ for k=1, ..., n-2. Replacing z_2 by $\omega_k z_1$, then $2(z_2-z_1)^2 b$ $(z_1, z_2) = (2-n)z_1^{n-1} - nz_1^{n-1} = (2-2n)z_1^{n-1}$. Since n > 1, $a(z_1, z_2)$ and $b(z_1, z_2)$ have no common factor in O_2 .

3. Some application

Definition 3.1. Let $V = \{(y, z) : f(y, z) = 0\}$ and $W = \{(y, z) : g(y, z) = 0\}$ be germs of analytic varieties of a polydisc in \mathbb{C}^2 where f, g are holomorphic and square-free near the origin and the origin is

an isolated singular point of V and W, both. V and W are said to be topologically equivalent or equisingular if there exists a germ at the origin of homeomorphism $\phi: (U_1, 0) \to (U_2, 0)$ such that $\phi(V) = W$ and $\phi(0) = 0$ where U_1 and U_2 are open subsets containing the origin in \mathbb{C}^2 . In this case, we call f(y, z) and g(y, z) topologically equivalent or equisingular.

LEMMA 3.2 (A generalization of Milnor's Theorem). Let F(x, y) be $F_1 \cdot F_2 \cdots F_k$ where F_i is a plane curve with only singularities at the origin in \mathbb{C}^2 and F_i may be reducible. Then $\mu(F) = \sum_{i=1}^k \mu(F_i) + 2 \sum_{i < j} I(F_i, F_j) - k + 1$ where each $I(F_i, F_j)$ is the intersection number of F_i and F_j at the origin for $i \neq j$.

Theorem 3.3. Let $V_t = \{(x, y, z) : g_t = z^n - np_t^{n-1}z + (n-1)q_t^{n-1} = 0\}$ be a smooth family of complex analytic varieties of a polydisc in \mathbb{C}^3 where $p_t = p(x, y, t)$ and $q_t = q(x, y, t)$ are holomorphic near (x, y) = (0, 0) and smooth near t = 0, and g_t is a Weierstrass polynomial in z of multiplicity n at the origin in \mathbb{C}^3 . Suppose that the origin in \mathbb{C}^3 is an isolated singular point of U_t and the z-discriminant of g_t , $D(g_t)$, is square-free for each t. Suppose that the Milnor number $\mu(g_t)$ are constant for all t near 0. Then $\mu(D(g_t))$ are constant for such all t. Moreover, if $f_t = z^n - np_t z + (n-1)q_t = 0$ and $\mu(g_t)$ are constant for such t with the same assumption as above, then $\mu(D(f_t))$ are constant, too.

Proof. By Theorem 2. 1, $\mu(D(g_t)) = \mu(g_t) - (n-1) + n(n-2)I(p_t^{n-1}, q_t^{n-1}) + 1$. But $\mu(D(g_t)) = \mu(p_t^{n(n-1)} - q_t^{(n-1)^2}) = \mu(p_t^n - \omega_1 q_t^{n-1}) + ... + \mu(p_t^n - \omega_{n-1}q_t^{n-1}) + 2 \cdot_{n-1}C_2I(p_t^n, q_t^{n-1}) - (n-1) + 1$ where ω_t is a root of an equation $a^{n-1}=1$, by Lemma 3. 2. So $\mu(p_t^n - \omega_1 q_t^{n-1}) + ... + \mu(p_t^n - \omega_{n-1}q_t^{n-1}) = \mu(g_t)$ for all t near 0. Since $\mu(g_t)$ are constant and μ is nonnegative and upper semi-continuous, for each fixed i $\mu(p_t^n - \omega_i q_t^{n-1})$ is constant and so $p_t^n + \omega_i q_t^{n-1}$ is equisingular near t=0 by [3]. Consider the family $W_t = \{(x, y, z) : f_t = z^n - np_t z + (n-1) q_t = 0\}$. Then the z-discriminant for f_t , $D(f_t)$ is equisingular near t=0 because ω_j may be equal to one for some j. Since $\mu(p_t^n - q_t^{n-1}) = \mu(f_t) - (n-1) + n(n-2)I(p_t, q_t) + 1$ for some $\omega_j = 1$ and $\mu(p_t^n - q_t^{n-1})$ is constant then $\mu(f_t)$ is constant and also $I(p_t, q_t)$ is constant near t=0. Therefore, then fact that $I(p_t, q_t)$ is constant near t=0 implies that $\mu(D(g_t))$ is constant for such t.

References

- J. Briancon et J. P. G. Henry, Équisingularité générique des familles de surfaces a singularité isolée, Bull. Soc. Math. France, 108, 1980, 259– 281.
- 2. C. Kang, Classification of irreducible plane curve singularities (preprint).
- 3. Lé-Ramanujam, The invariance of Milnor's number implies the invariance of the topological type, Amer. J. Math., 98, 1, 1976, 67-78.
- 4. J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Stud. 61, Princeton, New York, 1968.
- 5. O. Zariski, Studies in equisingularity I, Equivalent singularities of plane algebroid curves, Amer. J. Math. 87, 1965, 507-536.
- 6. O. Zariski, Studies in equisingularity III, Saturation of local rings and equisingularity, Amer. J. Math. 90, 1968, 961-1023.

Seoul National University Seoul 151-742, Korea