• Title/Summary/Keyword: Providing Information

Search Result 6,833, Processing Time 0.037 seconds

A Study on the Intelligent Service Selection Reasoning for Enhanced User Satisfaction : Appliance to Cloud Computing Service (사용자 만족도 향상을 위한 지능형 서비스 선정 방안에 관한 연구 : 클라우드 컴퓨팅 서비스에의 적용)

  • Shin, Dong Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.35-51
    • /
    • 2012
  • Cloud computing is internet-based computing where computing resources are offered over the Internet as scalable and on-demand services. In particular, in case a number of various cloud services emerge in accordance with development of internet and mobile technology, to select and provide services with which service users satisfy is one of the important issues. Most of previous works show the limitation in the degree of user satisfaction because they are based on so called concept similarity in relation to user requirements or are lack of versatility of user preferences. This paper presents cloud service selection reasoning which can be applied to the general cloud service environments including a variety of computing resource services, not limited to web services. In relation to the service environments, there are two kinds of services: atomic service and composite service. An atomic service consists of service attributes which represent the characteristics of service such as functionality, performance, or specification. A composite service can be created by composition of atomic services and other composite services. Therefore, a composite service inherits attributes of component services. On the other hand, the main participants in providing with cloud services are service users, service suppliers, and service operators. Service suppliers can register services autonomously or in accordance with the strategic collaboration with service operators. Service users submit request queries including service name and requirements to the service management system. The service management system consists of a query processor for processing user queries, a registration manager for service registration, and a selection engine for service selection reasoning. In order to enhance the degree of user satisfaction, our reasoning stands on basis of the degree of conformance to user requirements of service attributes in terms of functionality, performance, and specification of service attributes, instead of concept similarity as in ontology-based reasoning. For this we introduce so called a service attribute graph (SAG) which is generated by considering the inclusion relationship among instances of a service attribute from several perspectives like functionality, performance, and specification. Hence, SAG is a directed graph which shows the inclusion relationships among attribute instances. Since the degree of conformance is very close to the inclusion relationship, we can say the acceptability of services depends on the closeness of inclusion relationship among corresponding attribute instances. That is, the high closeness implies the high acceptability because the degree of closeness reflects the degree of conformance among attributes instances. The degree of closeness is proportional to the path length between two vertex in SAG. The shorter path length means more close inclusion relationship than longer path length, which implies the higher degree of conformance. In addition to acceptability, in this paper, other user preferences such as priority for attributes and mandatary options are reflected for the variety of user requirements. Furthermore, to consider various types of attribute like character, number, and boolean also helps to support the variety of user requirements. Finally, according to service value to price cloud services are rated and recommended to users. One of the significances of this paper is the first try to present a graph-based selection reasoning unlike other works, while considering various user preferences in relation with service attributes.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

A Study on the Influence of Workers' Aspiration for Academic Needs on Participation in University Education (근로자의 학업욕구 열망이 대학교육 참여에 미치는 영향에 관한 연구)

  • Lee, Ji-Hun;Mun, Bok-Hyun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.231-241
    • /
    • 2021
  • This study intended to present strategies and implications for attracting new students and customized education to university officials through research on the participation of workers' academic aspirations in university education. Thus, variables were derived by analyzing prior data, and causal settings between variables and questionnaires were developed. Subject to the survey, 331 workers interested in participating in university education were collected through interpersonal interviews. The collected data were dataized, and reliability and feasibility verification and frequency analysis were conducted. Finally, we validate the fit of the structural equation model and the causal relationship for each concept. Therefore, the results of the validation show the following implications. First, university officials should be motivated by a mentor and mentee system with experienced people who have switched to a suitable vocational group through university education. It will also be necessary to develop and disseminate programs so that they can continue to develop themselves for the future. To this end, it will be necessary to help them understand their aptitude and strengths through consultation with experts. Second, university officials should strengthen public relations so that prospective students can know the cases and information of the job transformation of the admitted workers through recommendations. It will also be necessary to develop university education programs that can self-develop, accept various ideas through "public contest", and provide accurate information about university education to workers through re-processing. Third, university officials should provide workers with a program that allows them to catch two rabbits: job transformation and self-improvement through university education. In other words, it is necessary to stimulate the motivation of workers by providing various information such as visiting advanced overseas companies, obtaining various certificates, moving between departments of blue-collar and white-collar, and transfer opportunities. Fourth, university officials should actively promote university education programs related to this by participating in university education and receiving systematic education and the flow of social environment. Finally, university officials will need to consult and promote workers so that they can self-develop when they participate in college education, and they will have to figure out what they need for self-development through demand surveys and analysis.

ICT Company Profiling Analysis and the Mechanism for Performance Creation Depending on the Type of Government Start-up Support Program (정부창업지원 프로그램 참여에 따른 ICT 기업 프로파일링과 성과창출 메커니즘)

  • Ha, Sangjip;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.237-258
    • /
    • 2022
  • As the global market environment changes, the domestic ICT industry has a growing influence on the world economy. This industry is regarded as an important driving force in the national economy from a technological and social point of view. In particular, small and medium-sized enterprises (SMEs) in the ICT industry are regarded as essential actors of domestic economic development in terms of company diversity, technology development and job creation. However, since it is small compared to large-sized enterprises, it is difficult for SMEs to survive with a differentiated strategy in an incomplete and rapidly changing environment. Therefore, SMEs must make a lot of efforts to improve their own capabilities, and the government needs to provide the desirable help suitable for corporate internal resources so that they can continue to be competitive. This study classifies the types of ICT SMEs participating in government support programs, and analyzes the relationship between resources and performance creation of each type. The data from the "ICT Small and Medium Enterprises Survey" conducted annually by the Ministry of Science and ICT was used. In the first stage, ICT SMEs were clustered based on common factors according to their experiences with government support programs. Three clusters were meaningfully classified, and each cluster was named "active participation type," "initial support type," and "soloist type." As a second step, this study compared the characteristics of each cluster through profiling analysis for each cluster. The third step carried out in this study was to find out the mechanism of R&D performance creation for each cluster through regression analysis. Different factors affected performance creation for each cluster, and the magnitude of the influence was also different. Specifically, for "active participation type", "current manpower", "technology competitiveness", and "R&D investment in the previous year" were found to be important factors in creating R&D performance. "Initial support type" was identified as "whether or not a dedicated R&D organization exists", "R&D investment amount in the previous year", "Ratio of sales to large companies", and "Ratio of vendors supplied to large companies" contributed to the performance. Lastly, in the case of "soloist type", "current workforce" and "future recruitment plan", "technological competitiveness", "R&D investment", "large company sales ratio", and "overseas sales ratio" showed a significant relationship with the performance. This study has practical implications of showing what strategy should be established when supporting SMEs in the future according to the government's participation in the startup program and providing a guide on what kind of support should be provided.

Development of a method to create a matrix of heavy rain damage rating standards using rainfall and heavy rain damage data (강우량 및 호우피해 자료를 이용한 호우피해 등급기준 Matrix작성 기법 개발)

  • Jeung, Se Jin;Yoo, Jae Eun;Hur, Dasom;Jung, Seung Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • Currently, as the frequency of extreme weather events increases, the scale of damage increases when extreme weather events occur. This has been providing forecast information by investing a lot of time and resources to predict rainfall from the past. However, this information is difficult for non-experts to understand, and it does not include information on how much damage occurs when extreme weather events occur. Therefore, in this study, a risk matrix based on heavy rain damage rating was presented by using the impact forecasting standard through the creation of a risk matrix presented for the first time in the UK. First, through correlation analysis between rainfall data and damage data, variables necessary for risk matrix creation are selected, and PERCENTILE (25%, 75%, 90%, 95%) and JNBC (Jenks Natural Breaks Classification) techniques suggested in previous studies are used. Therefore, a rating standard according to rainfall and damage was calculated, and two rating standards were synthesized to present one standard. As a result of the analysis, in the case of the number of households affected by the disaster, PERCENTILE showed the highest distribution than JNBC in the Yeongsan River and Seomjin River basins where the most damage occurred, and similar results were shown in the Chungcheong-do area. Looking at the results of rainfall grading, JNBC's grade was higher than PERCENTILE's, and the highest grade was shown especially in Jeolla-do and Chungcheong-do. In addition, when comparing with the current status of heavy rain warnings in the affected area, it can be confirmed that JNBC is similar. In the risk matrix results, it was confirmed that JNBC replicated better than PERCENTILE in Sejong, Daejeon, Chungnam, Chungbuk, Gwangju, Jeonnam, and Jeonbuk regions, which suffered the most damage.

Is corporate rebranding a double-edged sword? Consumers' ambivalence towards corporate rebranding of familiar brands

  • Phang, Grace Ing
    • Asia Marketing Journal
    • /
    • v.15 no.4
    • /
    • pp.131-159
    • /
    • 2014
  • Corporate rebranding has been evident in the qualitative corporate rebranding studies as an imposed organizational change that induces mixed reactions and ambivalent attitudes among consumers. Corporate rebranding for the established and familiar corporate brands leads to more ambivalent attitudes as these companies represent larger targets for disparaging information. Consumers are found to hold both positive and negative reactions toward companies and brands that they are familiar with. Nevertheless, the imposed change assumption and ambivalent attitude, in particular corporate rebranding, have never been widely explored in the quantitative corporate rebranding studies. This paper aims to provide a comprehensive empirical examination of the ambivalence towards rebrandingrebranded brand attitude-purchase intention relationships. The author proposes that corporate rebranding for familiar corporate brands is a double-edged sword that not only raises the expectation for better performance, but also induces conflicted and ambivalent attitudes among consumers. These consumers' ambivalent attitudes are influenced by both the parent brands-related and general attitude factors which further affect their rebranded brand attitude and purchase intention. A total of 156 useable questionnaires were collected from Malaysian working adults; and two established Malaysian airfreight operators were utilized as the focal parent brands. The study found a significant impact of prior parent brand attitudes on ambivalence towards rebranding (ATR). The parent brand attitudes served as anchors in influencing how new information was processed (Mazaheri et al., 2011; Sherif & Hovland, 1961) and closely related to behavioral intention (Prislin & Quellete, 1996). The ambivalent attitudes experienced were higher when individuals held both positive and negative reactions toward the parent brands. Consumers also held higher ambivalent attitudes when they preferred one of the parent brands; while disliked the other brand. The study also found significant relationships between the lead brand and the rebranded brand attitude; and between the partner brands and ATR. The familiar but controversial partner brand contributed significantly to the ambivalent attitudes experienced; while the more established lead brand had significant impact on the rebranded brand attitude. The lead and partner brands, though both familiar, represented different meanings to consumers. The author attributed these results to the prior parent brand attitudes, the skepticism and their general ambivalence toward the corporate rebranding. Both general attitude factors (i.e. skepticism and general ambivalence towards rebranding) were found to have significant positive impacts on ATR. Skeptical individuals questioned the possibility of a successful rebranding (Chang, 2011) and were more careful with their evaluations toward 'too god to be true' or 'made in heaven' pair of companies. The embedded general ambivalent attitudes that people held toward rebranding could be triggered from the associative network by the ambiguous situation (Prislin & Quellete, 1996). In addition, the ambivalent rebranded brand attitude was found to lower down purchase intention, supporting Hanze (2001), Lavine (2001) and van Harreveld et al. (2009)'s studies. Ambivalent individuals were found to prefer delay decision making by choosing around the mid-ranged points in 'willingness to buy' scale. The study provides several marketing implications. Ambivalence management is proven to be important to corporate rebranding to minimize the ambivalent attitudes experienced. This could be done by carefully controlling the parent brands-related and general attitude factors. The high ambivalent individuals are less confident with their own conflicted attitudes and are motivated to get rid of the psychological discomfort caused by these conflicted attitudes (Bell & Esses, 2002; Lau-Gesk, 2005; van Harreveld et al., 2009). They tend to process information more deeply (Jonas et al., 1997; Maio et al., 2000; Wood et al., 1985) and pay more attention to message that provides convincible arguments. Providing strong, favorable and convincible message is hence effective in alleviating consumers' ambivalent attitudes. In addition, brand name heuristic could be utilized because the rebranding strategy sends important signal to consumers about the changes that happen or going to happen. The ambivalent individuals will pay attention to both brand name heuristic and rebranding message in their effort to alleviate the psychological discomfort caused by ambivalent attitudes. The findings also provide insights to Malaysian and airline operators for a better planning and implementation of corporate rebranding exercise.

  • PDF

Perception to the dietary guidelines for Koreans among Korean adults based on sociodemographic characteristics and lifestyle (한국 성인의 인구사회학적 특성 및 생활습관에 따른 식생활지침 인식수준)

  • Yejin Yoon;Soo Hyun Kim;Hyojee Joung;Seoeun Ahn
    • Journal of Nutrition and Health
    • /
    • v.56 no.6
    • /
    • pp.742-755
    • /
    • 2023
  • Purpose: This study aimed to investigate the perceptions of the dietary guidelines for Koreans (DGK) among Korean adults based on sociodemographic and lifestyle factors. Methods: A total of 514 Korean adults aged 19-64 years completed a self-administered online questionnaire assessing their perceptions of DGK, sociodemographic and lifestyle factors, and subjective assessments regarding the importance of 11 nutrients and 16 food groups. The differences in the perceptions of DGK according to the characteristics of the participants were analyzed using t-tests or ANOVA. Additionally, the differences in the subjective assessments of nutrients and food groups according to the perceptions of DGK were examined using t-tests. Results: The awareness of DGK was significantly higher among participants aged 50-64 years, living in single-person households, who were physically active, with a lower frequency of eating out, and with a higher interest in dietary information (p < 0.05 for all). The understanding of DGK was significantly higher among participants aged 19-29 years, females, individuals who were under or normal weight, non-smokers, those who self-evaluated their diet as healthy, and those with a high interest in dietary information (p < 0.05 for all). Additionally, the applicability of DGK was significantly higher among participants aged 50-64 years, who were physically active, who self-evaluated their diet as healthy, and who had a high interest in dietary information (p < 0.05 for all). Participants with a higher perception of DGK tended to attribute greater importance to most nutrients and food groups compared to those with a lower perception level. However, processed meat and foods, beverages, and alcoholic drinks consistently received lower importance ratings compared to other nutrients and food groups, regardless of the perception level. Conclusion: This research suggests that the perceptions of DGK among Korean adults may vary depending on sociodemographic and lifestyle factors. Consequently, there is a need to customize and diversify the methods for providing dietary guidelines.

Research on Generative AI for Korean Multi-Modal Montage App (한국형 멀티모달 몽타주 앱을 위한 생성형 AI 연구)

  • Lim, Jeounghyun;Cha, Kyung-Ae;Koh, Jaepil;Hong, Won-Kee
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2024
  • Multi-modal generation is the process of generating results based on a variety of information, such as text, images, and audio. With the rapid development of AI technology, there is a growing number of multi-modal based systems that synthesize different types of data to produce results. In this paper, we present an AI system that uses speech and text recognition to describe a person and generate a montage image. While the existing montage generation technology is based on the appearance of Westerners, the montage generation system developed in this paper learns a model based on Korean facial features. Therefore, it is possible to create more accurate and effective Korean montage images based on multi-modal voice and text specific to Korean. Since the developed montage generation app can be utilized as a draft montage, it can dramatically reduce the manual labor of existing montage production personnel. For this purpose, we utilized persona-based virtual person montage data provided by the AI-Hub of the National Information Society Agency. AI-Hub is an AI integration platform aimed at providing a one-stop service by building artificial intelligence learning data necessary for the development of AI technology and services. The image generation system was implemented using VQGAN, a deep learning model used to generate high-resolution images, and the KoDALLE model, a Korean-based image generation model. It can be confirmed that the learned AI model creates a montage image of a face that is very similar to what was described using voice and text. To verify the practicality of the developed montage generation app, 10 testers used it and more than 70% responded that they were satisfied. The montage generator can be used in various fields, such as criminal detection, to describe and image facial features.

A Study on the Perception of Research Data Managers to Establish a Korea Research Data Commons System (국가연구데이터커먼즈 체계 수립을 위한 연구데이터 관리자들의 인식에 관한 연구)

  • Seong-Eun Park;Mikyoung Lee;Minhee Cho;Sa-Kwang Song;Dasol Kim;Hyung-Jun Yim
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.1
    • /
    • pp.465-486
    • /
    • 2024
  • The purpose of this study is to identify the current status of infrastructure and services for analyzing research data for research data managers at government-funded research institutions under the National Research Council for Science and Technology (NST) who will actually use the Korea Research Data Commons (KRDC), which is being developed by the Korea Institute of Science and Technology Information (KISTI) and to investigate the perceptions of research data managers related to the establishment of KRDC system. For the study, we conducted a survey targeting 24 government-funded research institutes, excluding KISTI, and interviewed research data managers from 9 of the 15 institutions surveyed who agreed to follow-up interviews. As a result of the survey, most institutions were providing related services, and their willingness to introduce an integrated analysis framework for the use of research data and provide a system for using externally released analysis software was also high. Meanwhile, when we investigated the external disclosure status of each institution's analysis services through follow-up interviews, only a minimal number of institutions were disclosing them to the outside world. The findings reveal that there is a demand to utilize analysis infrastructure and services when provided through the framework. However, it is difficult to disclose and share the analysis resources held by each organization. In order to establish the KRDC system, it is essential to share research sites' analysis infrastructure and services, and in addition, changes in the perception of research sites and institutional changes are necessary. Furthermore, there is a need to establish policies that consider the system's convenience, security, and compensation system raised in the follow-up interviews.

The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure (공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구)

  • Kim, Keun-Hwan;Kwon, Taehoon;Jun, Seung-pyo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.1-33
    • /
    • 2019
  • The small and medium sized enterprises (hereinafter SMEs) are already at a competitive disadvantaged when compared to large companies with more abundant resources. Manufacturing SMEs not only need a lot of information needed for new product development for sustainable growth and survival, but also seek networking to overcome the limitations of resources, but they are faced with limitations due to their size limitations. In a new era in which connectivity increases the complexity and uncertainty of the business environment, SMEs are increasingly urged to find information and solve networking problems. In order to solve these problems, the government funded research institutes plays an important role and duty to solve the information asymmetry problem of SMEs. The purpose of this study is to identify the differentiating characteristics of SMEs that utilize the public information support infrastructure provided by SMEs to enhance the innovation capacity of SMEs, and how they contribute to corporate performance. We argue that we need an infrastructure for providing information support to SMEs as part of this effort to strengthen of the role of government funded institutions; in this study, we specifically identify the target of such a policy and furthermore empirically demonstrate the effects of such policy-based efforts. Our goal is to help establish the strategies for building the information supporting infrastructure. To achieve this purpose, we first classified the characteristics of SMEs that have been found to utilize the information supporting infrastructure provided by government funded institutions. This allows us to verify whether selection bias appears in the analyzed group, which helps us clarify the interpretative limits of our study results. Next, we performed mediator and moderator effect analysis for multiple variables to analyze the process through which the use of information supporting infrastructure led to an improvement in external networking capabilities and resulted in enhancing product competitiveness. This analysis helps identify the key factors we should focus on when offering indirect support to SMEs through the information supporting infrastructure, which in turn helps us more efficiently manage research related to SME supporting policies implemented by government funded institutions. The results of this study showed the following. First, SMEs that used the information supporting infrastructure were found to have a significant difference in size in comparison to domestic R&D SMEs, but on the other hand, there was no significant difference in the cluster analysis that considered various variables. Based on these findings, we confirmed that SMEs that use the information supporting infrastructure are superior in size, and had a relatively higher distribution of companies that transact to a greater degree with large companies, when compared to the SMEs composing the general group of SMEs. Also, we found that companies that already receive support from the information infrastructure have a high concentration of companies that need collaboration with government funded institution. Secondly, among the SMEs that use the information supporting infrastructure, we found that increasing external networking capabilities contributed to enhancing product competitiveness, and while this was no the effect of direct assistance, we also found that indirect contributions were made by increasing the open marketing capabilities: in other words, this was the result of an indirect-only mediator effect. Also, the number of times the company received additional support in this process through mentoring related to information utilization was found to have a mediated moderator effect on improving external networking capabilities and in turn strengthening product competitiveness. The results of this study provide several insights that will help establish policies. KISTI's information support infrastructure may lead to the conclusion that marketing is already well underway, but it intentionally supports groups that enable to achieve good performance. As a result, the government should provide clear priorities whether to support the companies in the underdevelopment or to aid better performance. Through our research, we have identified how public information infrastructure contributes to product competitiveness. Here, we can draw some policy implications. First, the public information support infrastructure should have the capability to enhance the ability to interact with or to find the expert that provides required information. Second, if the utilization of public information support (online) infrastructure is effective, it is not necessary to continuously provide informational mentoring, which is a parallel offline support. Rather, offline support such as mentoring should be used as an appropriate device for abnormal symptom monitoring. Third, it is required that SMEs should improve their ability to utilize, because the effect of enhancing networking capacity through public information support infrastructure and enhancing product competitiveness through such infrastructure appears in most types of companies rather than in specific SMEs.