• Title/Summary/Keyword: Proteome analysis

Search Result 322, Processing Time 0.024 seconds

Periodic Change in DO Concentration for Efficient Poly-${\beta}$-hydroxy-butyrate Production Using Temperature-inducible Recombinant Escherichia coli with Proteome Analysis

  • Abdul Rahman, Nor Aini;Shirai, Yoshihito;Shimizu, Kazuyuki;Hassan, Mohd Ali
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.281-288
    • /
    • 2002
  • Recombinant Escherichia coli strain harboring the ${\lambda}$pR-pL promotor and heterologus poly-${\beta}$-hydroxybutyrate (PHB) biosynthesis genes was used to investigate the effect of culture conditions on the efficient PHB production. The expression of phb genes was induced by a temperature upshift from $33^{\circ}C\;to\;38^{\circ}C$. The protein expression levels were measured by using two-dimensional electrophoresis, and the enzyme activities were also measured to understand the effect of culture temperature, carbon sources, and the dissolved oxygen (DO) concentration on the metabolic regulations. AcetylCoA is an important branch point for PHB production. The decrease in DO concentration lowers the citrate synthase activity, thus limit the flux toward the TCA cycle, and increase the flux for PHB production. Since NADPH is required for PHB production, the PHB production does not continue leading the overproduction of acetate and lac-tate. Based on these observations, a new operation was considered where DO concentration was changed periodically, and it was verified its usefulness for the efficient PHB production by experiments.

Proteome analysis of chloroplast proteins in stage albinism line of winter wheat (triticum aestivum) FA85

  • Hou, Dian-Yun;Xu, Hong;Du, Guang-Yuan;Lin, Jun-Tang;Duan, Min;Guo, Ai-Guang
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.450-455
    • /
    • 2009
  • The "stage albinism line of winter wheat" FA85 was a specific natural mutant strain on leaf color. This physiological mutation was controlled by cytogene. In order to reveal the genetic and biochemical mechanism of albinism, 2-DE was used to investigate the difference of chloroplast protein expression pattern between FA85 and its parent wheat Aibian 1. From the results of 2-DE gels analysis, approximately 683 spots were detected on each gel, and 57 spots were expressed differently at least two-fold. Using MALDI-TOF/TOF MS, 14 of 57 spots were identified, which could be categorized into four classes: carbon metabolism, energy metabolism, defense/stress response and signal transduction. Compared with the parent wheat, the expression of ATPase-$\gamma$ and GP1-$\alpha$ was up-regulated in FA85, and of other proteins was down-regulated. Together, we concluded that the expression of chloroplast proteins had changed obviously in FA85, which might be related to the leaf color mutant.

Resources for Systems Biology Research

  • Kim Jin-Sik;Yun Hong-Seok;Kim Hyun-Uk;Choi Hyung-Seok;Kim Tae-Yong;Woo Han-Min;Lee Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.832-848
    • /
    • 2006
  • Systems biology has recently become an important research paradigm that is anticipated to decipher the metabolic, regulatory, and signaling networks of complex living organisms on the whole organism level. Thus, various research outputs are being generated, along with the development of many tools and resources for systems biology research. Accordingly, this review provides a comprehensive summary of the current resources and tools for systems biology research that will hopefully be helpful to researchers involved in this field. The resources are categorized into the following five groups: genome information and analysis, transcriptome and proteome databases, metabolic profiling and metabolic control analysis, metabolic and regulatory information, and software for computational systems biology. A summary table and some future perspectives are also provided.

Proteome Analysis of the Young Spikelets of Photoperiod-Sensitive Rice Mutant Treated in Different Photoperiods

  • Pandeya, Devendra;Song, You-Chun;Kim, Sung-Su;Suh, Hak-Soo;Kang, Sang-Gu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.281-288
    • /
    • 2007
  • Photoperiod sensitive genetic male sterile (PGMS) rice is sterile mutant controlled by photoperiod. A PGMS mutant 920S was sterile grown under long-day (LD) photoperiod (14 h light/10 h dark) but fertile grown under short-day (SD) photoperiod (10 h light/14 h dark). Proteome analysis revealed that 12 protein spots were differentially expressed in the spikelets of 920S plants either treated with LD or SD photoperiod. Among these proteins, three proteins including chlorophyll a/b binding protein, vacuolar ATPase ${\beta}-subunit,\;{\alpha}-tubulin$ and an unknown protein were more than three-fold abundant in the spikelet of the SD-treated plants than those of the LD-treated plants. On the other hand, eight proteins including acetyl transferase, 2, 3- biphosphoglycerate, aminopeptidase N, pyruvate decarboxylase, 60S acidic ribosomal protein and three unknown protein spots were more abundant in the spikelets of the LD-treated plants than those of the SD-treated plants. The results suggest that the observed proteins may be involved in sterile or fertile pollen development under LD or SD photoperiod respectively in the PGMS mutant rice.

Development of Ultra-High Pressure Capillary Reverse-Phase Liquid Chromatography/Tandem Mass Spectrometry for High-Sensitive and High-Throughput Proteomics

  • Kim, Min-Sik;Choie, Woo-Suk;Shin, Yong-Seung;Yu, Myeong-Hee;Lee, Sang-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1833-1839
    • /
    • 2004
  • Recently mass spectrometry and separation methods such as liquid chromatography have become major tools in the field of proteomics. In this report, we describe in detail our efforts to develop ultra-high pressure capillary reverse-phase liquid chromatography (cRPLC) and its online coupling to a mass spectrometer by a nanoelectrospray (nanoESI) interface. The RPLC system is constructed in house to deliver LC solvents at the pressure up to 20,000 psig, which is four times higher than conventional RPLC systems. The high operation pressure allows the efficient use of packed micro-capillary columns (50, 75 and 150 ${\mu}$m i.d., up to 1.5 m long). We will discuss the effect of column diameter on the sensitivity of cRPLC/MS/MS experiments and the utility of the developed technique for proteome analysis by its application in the analysis of proteome samples having different levels of complexity.

Label-Free Quantitative Proteomics and N-terminal Analysis of Human Metastatic Lung Cancer Cells

  • Min, Hophil;Han, Dohyun;Kim, Yikwon;Cho, Jee Yeon;Jin, Jonghwa;Kim, Youngsoo
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.457-466
    • /
    • 2014
  • Proteomic analysis is helpful in identifying cancerassociated proteins that are differentially expressed and fragmented that can be annotated as dysregulated networks and pathways during metastasis. To examine metastatic process in lung cancer, we performed a proteomics study by label-free quantitative analysis and N-terminal analysis in 2 human non-small-cell lung cancer cell lines with disparate metastatic potentials - NCI-H1703 (primary cell, stage I) and NCI-H1755 (metastatic cell, stage IV). We identified 2130 proteins, 1355 of which were common to both cell lines. In the label-free quantitative analysis, we used the NSAF normalization method, resulting in 242 differential expressed proteins. For the N-terminal proteome analysis, 325 N-terminal peptides, including 45 novel fragments, were identified in the 2 cell lines. Based on two proteomic analysis, 11 quantitatively expressed proteins and 8 N-terminal peptides were enriched for the focal adhesion pathway. Most proteins from the quantitative analysis were upregulated in metastatic cancer cells, whereas novel fragment of CRKL was detected only in primary cancer cells. This study increases our understanding of the NSCLC metastasis proteome.

Proteomic Functional Characterization of Bovine Stromal Vascular Cells from Omental, Subcutaneous and Intramuscular Adipose Depots

  • Rajesh, Ramanna Valmiki;Kim, Seong-Kon;Park, Mi-Rim;Nam, Jin-Seon;Kim, Nam-Kuk;Kwon, Seulemina;Yoon, Du-Hak;Kim, Tae-Hun;Lee, Hyun-Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.110-124
    • /
    • 2011
  • Anatomically separate fat depots differ in size, function, and contribution to pathological states such as the metabolic syndrome. We isolated pre-adipocytes from different adipose depots, omental, subcutaneous and intramuscular, of beef cattle, and cultured in vitro to determine the basis for the variations and attribute these variations to the inherent properties of adipocyte progenitors. The proliferating cells from all depots before the confluence were harvested and the proteome was analyzed by a functional proteomic approach, involving 2-DE and MALDI-TOF/TOF. More than 252 protein spots were identified, selected and analyzed by Image Master (ver 7.0) and MALDI-TOF/TOF. Further, our analysis showed that there were specific differences in proteome expression patterns among proliferating precursor cells from the three depots. Sixteen proteins were found to be differentially expressed and these were identified as proteins involved in cellular processes, heat shock/chaperones, redox proteins, cytoskeletal proteins and metabolic enzymes. The results also enabled us to understand the basic roles of these proteins in different inherent properties exhibited by adipose tissue depots.

Altered Proteome of Extracellular Vesicles Derived from Bladder Cancer Patients Urine

  • Lee, Jingyun;McKinney, Kimberly Q.;Pavlopoulos, Antonis J.;Niu, Meng;Kang, Jung Won;Oh, Jae Won;Kim, Kwang Pyo;Hwang, Sunil
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.179-187
    • /
    • 2018
  • Proteomic analysis of extracellular vesicles (EVs) from biological fluid is a powerful approach to discover potential biomarkers for human diseases including cancers, as EV secreted to biological fluids are originated from the affected tissue. In order to investigate significant molecules related to the pathogenesis of bladder cancer, EVs were isolated from patient urine which was analyzed by mass spectrometry based proteomics. Comparison of the EV proteome to the whole urine proteome demonstrated an increased number of protein identification in EV. Comparative MS analyses of urinary EV from control subjects and bladder cancer patients identified a total of 1,222 proteins. Statistical analyses provided 56 proteins significantly increased in bladder cancer urine, including proteins for which expression levels varied by cancer stage (P-value < 0.05). While urine represents a valuable, non-invasive specimen for biomarker discovery in urologic cancers, there is a high degree of intra- and inter-individual variability in urine samples. The enrichment of urinary EV demonstrated its capability and applicability of providing a focused identification of biologically relevant proteins in urological diseases.

Proteome characterization of the liquid cultured tetraploid roots in Platycodon grandiflorum

  • Ko, Jung-Hee;Kwon, Soo Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.125-125
    • /
    • 2017
  • The roots of Platycodon grandiflorum are commonly used for treating bronchitis, asthma, tuberculosis, diabetes, and other inflammatory diseases. Since the molecular mechanism underlying the roots of the plant is unclear. Therefore, the present study was conducted to profile proteins from liquid cultured tetraploid roots of Platycodon grandi orum fl using high throughput proteome approach. Two-dimensional gels stained with CBB, a total of 659 differentially expressed proteins were identified from the liquid medium cultured tetraploid roots of which 32 proteins spots (${\geq}1.5-fold$) were sorted for mass spectrometry analysis. Out of these 32 proteins, a total of 15 proteins were up-regulated such as Serine carboxypeptidase-like 27, Transcription factor bHLH150, 60 kDa jasmonate-induced protein, Cytosolic Fe-S cluster assembly factor NBP35, Regulatory associated protein of TOR 2 and a total of 17 proteins were down-regulated such as Protein G1-like2, Phenylalanine ammonia-lyase, Fructokinase-2, Trihelix transcription factor GT-3a, Guanine nucleotide-binding protein alpha-1 subunit. However, the frequency distribution of identified proteins was carried out within functional categories based on molecular functions, cellular components, and biological processes. Functional categorization revealed that the most of the identified proteins from the explants were mainly associated with the nucleic acid binding, oxidoreductase, transferase activity, protein binding and hydrolase activity. In addition, the proteomic feedback of tetraploid roots of P. grandiflorum may potentially be used to understand the characteristics of proteins and their functions.

  • PDF

Comparative Proteomic Analysis of Changes in the Bovine Whey Proteome during the Transition from Colostrum to Milk

  • Zhang, Le-Ying;Wang, Jia-Qi;Yang, Yong-Xin;Bu, Deng-Pan;Li, Shan-Shan;Zhou, Ling-Yun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.272-278
    • /
    • 2011
  • Bovine whey protein expression patterns of colostrum are much different from that of milk. Moreover, bovine colostrum is an important source of protective, nutritional and developmental factors for the newborn. However, to our knowledge, no research has been performed to date using a comparative proteomic method on the changes in the bovine whey proteome during the transition from colostrum to milk. This study therefore separated whey protein of days 1, 3, 7 and 21 after calving using two dimension electrophoresis. Differentially expressed proteins at different collection times were identified using high-performance liquid chromatography in tandem with mass spectrometry (LC/MS) and validated by enzyme-linked immunosorbent assay (ELISA) in order to understand the developmental changes in the bovine whey proteome during the transition from colostrum to milk. The expression patterns of whey protein of days 1 and 3 post-partum were similar except that immunoglobulin G was down-regulated on day 3, and four proteins were found to be down-regulated on days 7 and 21 compared with day 1 after delivering, including immunoglobulin G, immunoglobulin M, albumin, and lactotransferrin, which are involved in immunity and molecule transport. The results of this study confirm the comparative proteomic method has the advantage over other methods such as ELISA and immunoassays in that it can simultaneously detect more differentially expressed proteins. In addition, the difference in composition of milk indicates a need for adjustment of the colostrum feeding regimen to ensure a protective immunological status for newborn calves.