DOI QR코드

DOI QR Code

Label-Free Quantitative Proteomics and N-terminal Analysis of Human Metastatic Lung Cancer Cells

  • Min, Hophil (Department of Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine) ;
  • Han, Dohyun (Department of Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine) ;
  • Kim, Yikwon (Department of Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine) ;
  • Cho, Jee Yeon (Division of Life Sciences and Biotechnology, Korea University) ;
  • Jin, Jonghwa (Department of Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine) ;
  • Kim, Youngsoo (Department of Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine)
  • Received : 2014.02.20
  • Accepted : 2014.04.08
  • Published : 2014.06.30

Abstract

Proteomic analysis is helpful in identifying cancerassociated proteins that are differentially expressed and fragmented that can be annotated as dysregulated networks and pathways during metastasis. To examine metastatic process in lung cancer, we performed a proteomics study by label-free quantitative analysis and N-terminal analysis in 2 human non-small-cell lung cancer cell lines with disparate metastatic potentials - NCI-H1703 (primary cell, stage I) and NCI-H1755 (metastatic cell, stage IV). We identified 2130 proteins, 1355 of which were common to both cell lines. In the label-free quantitative analysis, we used the NSAF normalization method, resulting in 242 differential expressed proteins. For the N-terminal proteome analysis, 325 N-terminal peptides, including 45 novel fragments, were identified in the 2 cell lines. Based on two proteomic analysis, 11 quantitatively expressed proteins and 8 N-terminal peptides were enriched for the focal adhesion pathway. Most proteins from the quantitative analysis were upregulated in metastatic cancer cells, whereas novel fragment of CRKL was detected only in primary cancer cells. This study increases our understanding of the NSCLC metastasis proteome.

Keywords

References

  1. Anisowicz, A., Huang, H., Braunschweiger, K.I., Liu, Z., Giese, H., Wang, H., Mamaev, S., Olejnik, J., Massion, P.P., and Del Mastro, R.G. (2008). A high-throughput and sensitive method to measure global DNA methylation: application in lung cancer. BMC Cancer 8, 222. https://doi.org/10.1186/1471-2407-8-222
  2. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., et al. (2004). UniProt: the universal protein knowledgebase. Nucleic Acids Res. 32, D115-119. https://doi.org/10.1093/nar/gkh151
  3. Bauer, K.M., Lambert, P.A., and Hummon, A.B. (2012). Comparative label-free LC-MS/MS analysis of colorectal adenocarcinoma and metastatic cells treated with 5-fluorouracil. Proteomics 12, 1928-1937. https://doi.org/10.1002/pmic.201200041
  4. Brannan, J.M., Sen, B., Saigal, B., Prudkin, L., Behrens, C., Solis, L., Dong, W., Bekele, B.N., Wistuba, I., and Johnson, F.M. (2009). EphA2 in the early pathogenesis and progression of non-small cell lung cancer. Cancer Prev. Res. (Phila) 2, 1039-1049. https://doi.org/10.1158/1940-6207.CAPR-09-0212
  5. Brown, J.R., and Hartley, B.S. (1966). Location of disulphide bridges by diagonal paper electrophoresis. The disulphide bridges of bovine chymotrypsinogen A. Biochem. J. 101, 214-228. https://doi.org/10.1042/bj1010214
  6. Constantinescu, D., Gray, H.L., Sammak, P.J., Schatten, G.P., and Csoka, A.B. (2006). Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24, 177-185. https://doi.org/10.1634/stemcells.2004-0159
  7. Dawson, T.M., and Dawson, V.L. (2003). Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819-822. https://doi.org/10.1126/science.1087753
  8. Domon, B., and Aebersold, R. (2006). Mass spectrometry and protein analysis. Science 312, 212-217. https://doi.org/10.1126/science.1124619
  9. Dugaiczyk, A., Law, S.W., and Dennison, O.E. (1982). Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. Proc. Natl. Acad. Sci. USA 79, 71-75. https://doi.org/10.1073/pnas.79.1.71
  10. Enoksson, M., Li, J., Ivancic, M.M., Timmer, J.C., Wildfang, E., Eroshkin, A., Salvesen, G.S., and Tao, W.A. (2007). Identification of proteolytic cleavage sites by quantitative proteomics. J. Proteome Res. 6, 2850-2858. https://doi.org/10.1021/pr0701052
  11. Fanayan, S., Smith, J.T., Lee, L.Y., Yan, F., Snyder, M., Hancock, W.S., and Nice, E. (2013). Proteogenomic analysis of human colon carcinoma cell lines LIM1215, LIM1899, and LIM2405. J. Proteome Res. 12, 1732-1742. https://doi.org/10.1021/pr3010869
  12. Freund, D.M., and Prenni, J.E. (2013). Improved detection of quantitative differences using a combination of spectral counting and MS/MS total ion current. J. Proteome Res. 12, 1996-2004. https://doi.org/10.1021/pr400100k
  13. Gevaert, K., Goethals, M., Martens, L., Van Damme, J., Staes, A., Thomas, G.R., and Vandekerckhove, J. (2003). Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat. Biotechnol. 21, 566-569. https://doi.org/10.1038/nbt810
  14. Ghosh, D., Yu, H., Tan, X.F., Lim, T.K., Zubaidah, R.M., Tan, H.T., Chung, M.C., and Lin, Q. (2011). Identification of key players for colorectal cancer metastasis by iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines. J. Proteome Res. 10, 4373-4387. https://doi.org/10.1021/pr2005617
  15. Han, D., Moon, S., Kim, Y., Ho, W.K., Kim, K., Kang, Y., and Jun, H. (2012). Comprehensive phosphoproteome analysis of INS-1 pancreatic beta-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry. J. Proteome Res. 11, 2206-2223. https://doi.org/10.1021/pr200990b
  16. Hoffman, P.C., Mauer, A.M., and Vokes, E.E. (2000). Lung cancer. Lancet 355, 479-485. https://doi.org/10.1016/S0140-6736(00)82038-3
  17. Hsu, J.L., Huang, S.Y., Chow, N.H., and Chen, S.H. (2003). Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843-6852. https://doi.org/10.1021/ac0348625
  18. Hwang, S.J., Seol, H.J., Park, Y.M., Kim, K.H., Gorospe, M., Nam, D.H., and Kim, H.H. (2012). MicroRNA-146a suppresses metastatic activity in brain metastasis. Mol. Cells 34, 329-334. https://doi.org/10.1007/s10059-012-0171-6
  19. Jemal, A., Siegel, R., Xu, J., and Ward, E. (2010). Cancer statistics, 2010. CA Cancer J. Clin. 60, 277-300. https://doi.org/10.3322/caac.20073
  20. Kawakami, T., Hoshida, Y., Kanai, F., Tanaka, Y., Tateishi, K., Ikenoue, T., Obi, S., Sato, S., Teratani, T., Shiina, S., et al. (2005). Proteomic analysis of sera from hepatocellular carcinoma patients after radiofrequency ablation treatment. Proteomics 5, 4287-4295. https://doi.org/10.1002/pmic.200401287
  21. Kim, Y.H., Kwei, K.A., Girard, L., Salari, K., Kao, J., Pacyna-Gengelbach, M., Wang, P., Hernandez-Boussard, T., Gazdar, A.F., Petersen, I., et al. (2010). Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer. Oncogene 29, 1421-1430. https://doi.org/10.1038/onc.2009.437
  22. Kim, S.J., Jin, J., Kim, Y.J., Kim, Y., and Yu, H.G. (2012). Retinal proteome analysis in a mouse model of oxygen-induced retinopathy. J. Proteome Res. 11, 5186-5203. https://doi.org/10.1021/pr300389r
  23. Li, F., Glinskii, O.V., Zhou, J., Wilson, L.S., Barnes, S., Anthony, D.C., and Glinsky, V.V. (2011). Identification and analysis of signaling networks potentially involved in breast carcinoma metastasis to the brain. PLoS One 6, e21977. https://doi.org/10.1371/journal.pone.0021977
  24. Liu, H., Sadygov, R.G., and Yates, J.R., 3rd (2004). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193-4201. https://doi.org/10.1021/ac0498563
  25. Liu, Y., Sun, W., Zhang, K., Zheng, H., Ma, Y., Lin, D., Zhang, X., Feng, L., Lei, W., Zhang, Z., et al. (2007). Identification of genes differentially expressed in human primary lung squamous cell carcinoma. Lung Cancer 56, 307-317. https://doi.org/10.1016/j.lungcan.2007.01.016
  26. Lopez-Otin, C., and Bond, J.S. (2008). Proteases: multifunctional enzymes in life and disease. J. Biol. Chem. 283, 30433-30437. https://doi.org/10.1074/jbc.R800035200
  27. McDonald, L., and Beynon, R.J. (2006). Positional proteomics: preparation of amino-terminal peptides as a strategy for proteome simplification and characterization. Nat. Protoc. 1, 1790-1798. https://doi.org/10.1038/nprot.2006.317
  28. Nisman, B., Biran, H., Heching, N., Barak, V., Ramu, N., Nemirovsky, I., and Peretz, T. (2008). Prognostic role of serum cytokeratin 19 fragments in advanced non-small-cell lung cancer: association of marker changes after two chemotherapy cycles with different measures of clinical response and survival. Br. J. Cancer 98, 77-79. https://doi.org/10.1038/sj.bjc.6604157
  29. Obchoei, S., Weakley, S.M., Wongkham, S., Wongkham, C., Sawanyawisuth, K., Yao, Q., and Chen, C. (2011). Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. Mol. Cancer 10, 102. https://doi.org/10.1186/1476-4598-10-102
  30. Old, W.M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K.G., Mendoza, A., Sevinsky, J.R., Resing, K.A., and Ahn, N.G. (2005). Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 4, 1487-1502. https://doi.org/10.1074/mcp.M500084-MCP200
  31. Opferman, J.T., and Korsmeyer, S.J. (2003). Apoptosis in the development and maintenance of the immune system. Nat. Immunol. 4, 410-415. https://doi.org/10.1038/ni0503-410
  32. Parkin, D.M., and Fernandez, L.M. (2006). Use of statistics to assess the global burden of breast cancer. Breast J. 12 Suppl 1, S70-80. https://doi.org/10.1111/j.1075-122X.2006.00205.x
  33. Prudova, A., auf dem Keller, U., Butler, G.S., and Overall, C.M. (2010). Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteomics 9, 894-911. https://doi.org/10.1074/mcp.M000050-MCP201
  34. Pujol, J.L., Grenier, J., Daures, J.P., Daver, A., Pujol, H., and Michel, F.B. (1993). Serum fragment of cytokeratin subunit 19 measured by CYFRA 21-1 immunoradiometric assay as a marker of lung cancer. Cancer Res. 53, 61-66.
  35. Rao, J.S. (2003). Molecular mechanisms of glioma invasiveness: the role of proteases. Nat. Rev. Cancer 3, 489-501. https://doi.org/10.1038/nrc1121
  36. Shibue, T., and Weinberg, R.A. (2009). Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc. Natl. Acad. Sci. USA 106, 10290-10295. https://doi.org/10.1073/pnas.0904227106
  37. Srivastava, M., Bubendorf, L., Nolan, L., Glasman, M., Leighton, X., Miller, G., Fehrle, W., Raffeld, M., Eidelman, O., Kallioniemi, O.P., et al. (2001). ANX7 as a bio-marker in prostate and breast cancer progression. Dis. Markers 17, 115-120. https://doi.org/10.1155/2001/239602
  38. Storr, S.J., Carragher, N.O., Frame, M.C., Parr, T., and Martin, S.G. (2011). The calpain system and cancer. Nat. Rev. Cancer 11, 364-374. https://doi.org/10.1038/nrc3050
  39. Streckfus, C., Bigler, L., Dellinger, T., Pfeifer, M., Rose, A., and Thigpen, J.T. (1999). CA 15-3 and c-erbB-2 presence in the saliva of women. Clin. Oral Investig. 3, 138-143. https://doi.org/10.1007/s007840050092
  40. Streckfus, C., Bigler, L., Tucci, M., and Thigpen, J.T. (2000). A preliminary study of CA15-3, c-erbB-2, epidermal growth factor receptor, cathepsin-D, and p53 in saliva among women with breast carcinoma. Cancer Invest. 18, 101-109. https://doi.org/10.3109/07357900009038240
  41. Tan, F., Jiang, Y., Sun, N., Chen, Z., Lv, Y., Shao, K., Li, N., Qiu, B., Gao, Y., Li, B., et al. (2012). Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis. Mol. Cell. Proteomics 11, M111 008821. https://doi.org/10.1074/mcp.M111.008821
  42. Tian, T., Hao, J., Xu, A., Luo, C., Liu, C., Huang, L., Xiao, X., and He, D. (2007). Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis. Cancer Sci. 98, 1265-1274. https://doi.org/10.1111/j.1349-7006.2007.00514.x
  43. Wang, C., Guo, K., Gao, D., Kang, X., Jiang, K., Li, Y., Sun, L., Zhang, S., Sun, C., Liu, X., et al. (2011). Identification of transaldolase as a novel serum biomarker for hepatocellular carcinoma metastasis using xenografted mouse model and clinic samples. Cancer Lett. 313, 154-166. https://doi.org/10.1016/j.canlet.2011.08.031
  44. Weijers, R.N. (1977). Amino acid sequence in bovine serum albumin. Clin. Chem. 23, 1361-1362.
  45. Willis, N.D., Cox, T.R., Rahman-Casans, S.F., Smits, K., Przyborski, S.A., van den Brandt, P., van Engeland, M., Weijenberg, M., Wilson, R.G., de Bruine, A., et al. (2008). Lamin A/C is a risk biomarker in colorectal cancer. PLoS One 3, e2988. https://doi.org/10.1371/journal.pone.0002988
  46. Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. Nat. Methods 6, 359-362. https://doi.org/10.1038/nmeth.1322
  47. Wu, W.S., Wu, J.R., and Hu, C.T. (2008). Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev. 27, 303-314. https://doi.org/10.1007/s10555-008-9112-4
  48. Xie, X., Feng, S., Vuong, H., Liu, Y., Goodison, S., and Lubman, D.M. (2010). A comparative phosphoproteomic analysis of a human tumor metastasis model using a label-free quantitative approach. Electrophoresis 31, 1842-1852. https://doi.org/10.1002/elps.200900752
  49. Xue, H., Lu, B., Zhang, J., Wu, M., Huang, Q., Wu, Q., Sheng, H., Wu, D., Hu, J., and Lai, M. (2010). Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach. J. Proteome Res. 9, 545-555. https://doi.org/10.1021/pr9008817
  50. Yoon, S.Y., Kim, J.M., Oh, J.H., Jeon, Y.J., Lee, D.S., Kim, J.H., Choi, J.Y., Ahn, B.M., Kim, S., Yoo, H.S., et al. (2006). Gene expression profiling of human HBV- and/or HCV-associated hepatocellular carcinoma cells using expressed sequence tags. Int. J. Oncol. 29, 315-327.
  51. Yoshimura, K., Meckel, K.F., Laird, L.S., Chia, C.Y., Park, J.J., Olino, K.L., Tsunedomi, R., Harada, T., Iizuka, N., Hazama, S., et al. (2009). Integrin alpha2 mediates selective metastasis to the liver. Cancer Res. 69, 7320-7328. https://doi.org/10.1158/0008-5472.CAN-09-0315
  52. Zybailov, B., Mosley, A.L., Sardiu, M.E., Coleman, M.K., Florens, L., and Washburn, M.P. (2006). Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339-2347. https://doi.org/10.1021/pr060161n

Cited by

  1. Protein amino-terminal modifications and proteomic approaches for N-terminal profiling vol.24, 2015, https://doi.org/10.1016/j.cbpa.2014.10.026
  2. Comparative Proteomic Profiling of Pancreatic Ductal Adenocarcinoma Cell Lines vol.37, pp.12, 2014, https://doi.org/10.14348/molcells.2014.0207