DOI QR코드

DOI QR Code

Effect of Body Mass Index on Global DNA Methylation in Healthy Korean Women

  • Na, Yeon Kyung (College of Nursing, School of Medicine, Kyungpook National University) ;
  • Hong, Hae Sook (College of Nursing, School of Medicine, Kyungpook National University) ;
  • Lee, Duk Hee (Department of Preventive Medicine, School of Medicine, Kyungpook National University) ;
  • Lee, Won Kee (Department of Preventive Medicine, School of Medicine, Kyungpook National University) ;
  • Kim, Dong Sun (Department of Anatomy and Brain Korea 21 Plus KNU Biomedical Convergence Program)
  • Received : 2014.03.27
  • Accepted : 2014.05.26
  • Published : 2014.06.30

Abstract

Obesity is known to be strongly associated with cardiovascular disease and cancer, the leading causes of mortality worldwide, and develops owing to interactions between genes and the environment. DNA methylation can act as a downstream effector of environmental signals, and analysis of this process therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. Global DNA methylation of peripheral blood cells has recently been proposed as a potential biomarker for disease risk. Repetitive element DNA methylation has been shown to be associated with prominent obesity-related chronic diseases, but little is known about its relationship with weight status. In this study, we quantified the methylation of Alu elements in the peripheral blood DNA of 244 healthy women with a range of body mass indexes (BMIs) using pyrosequencing technology. Among the study participants, certain clinical laboratory parameters, including hemoglobin, serum glutamic oxaloacetic transaminase, serum glutamic- pyruvic transaminase, total cholesterol, and triglyceride levels were found to be strongly associated with BMI. Moreover, a U-shaped association between BMI and Alu methylation was observed, with the lowest methylation levels occurring at BMIs of between 23 and $30kg/m^2$. However, there was no significant association between Alu methylation and age, smoking status, or alcohol consumption. Overall, we identified a differential influence of BMI on global DNA methylation in healthy Korean women, indicating that BMI-related changes in Alu methylation might play a complex role in the etiology and pathogenesis of obesity. Further studies are required to elucidate the mechanisms underlying this relationship.

Keywords

References

  1. Anderson, A.S., and Caswell, S. (2009). Obesity management-an opportunity for cancer prevention. Surgeon 7, 282-285. https://doi.org/10.1016/S1479-666X(09)80005-X
  2. Baccarelli, A., Wright, R., Bollati, V., Litonjua, A., Zanobetti, A., Tarantini, L., Sparrow, D., Vokonas, P., and Schwartz, J. (2010). Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology. 21, 819-828. https://doi.org/10.1097/EDE.0b013e3181f20457
  3. Bernstein, B.E., Meissner, A., and Lander, E.S. (2007). The mammalian epigenome. Cell 128, 669-681. https://doi.org/10.1016/j.cell.2007.01.033
  4. Berrington de Gonzalez, A., Hartge, P., Cerhan, J.R., Flint, A.J., Hannan, L., Maclnnis, R.J., Moore, S.C., Tobias, G.S., Anton-Culver, H., Freeman, L.B., et al. (2010). Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 363, 2211-2219. https://doi.org/10.1056/NEJMoa1000367
  5. Bollati, V., Baccarelli, A., Hou, L., Bonzini, M., Fustinoni, S., Cavallo, D., Byun, H.M., Jiang, J., Marinelli, B., Pesatori, A.C., et al. (2007). Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 67, 876-880. https://doi.org/10.1158/0008-5472.CAN-06-2995
  6. Calabrese, E.J. (2010). Hormesis is central to toxicology, pharmacology and risk assessment. Hum. Exp. Toxicol. 29, 249-261. https://doi.org/10.1177/0960327109363973
  7. Carless, M.A., Kulkarni, H., Kos, M.Z., Charlesworth, J., Peralta, J.M., Goring, H.H., Curran, J.E., Almasy, L., Dyer, T.D., Comuzzie, A.G., et al. (2013). Genetic effects on DNA methylation and its potential relevance for obesity in Mexican Americans. PLoS One 8, e73950 https://doi.org/10.1371/journal.pone.0073950
  8. Danaei, G., Ding, E.L., Mozaffarian, D., Taylor, B., Rehm, J., Murray, C.J., and Ezzati, M. (2009). The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 6, e1000058. https://doi.org/10.1371/journal.pmed.1000058
  9. Deininger, P.L., and Batzer M.A. (1999). Alu repeats and human disease. Mol. Genet. Metab. 67, 183-193. https://doi.org/10.1006/mgme.1999.2864
  10. Esteller, M., Corn, P.G., Baylin, S.B., and Herman, J.G. (2001). A gene hypermethylation profile of human cancer. Cancer Res. 61, 3225-3229.
  11. Feinberg, A.P., Irizarry, R.A., Fradin, D., Aryee, M.J., Murakami, P., Aspelund, T., Eiriksdottir, G., Harris, T.B., Launer, L., Gudnason, V., et al. (2010). Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci. Transl. Med. 2, 49-67.
  12. Foley, D.L., Craig, J.M., Morley, R., Olsson, C.J., Dwyer, T., Smith, K., and Saffery, R. (2009). Prospects for epigenetic epidemiology. Am. J. Epidemiol. 169, 389-400.
  13. Fujiki, K., Kano, F., Shiota, K., and Murata, M. (2009). Expression of the peroxisome proliferator activated receptor ${\gamma}$ gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol. 7, 38. https://doi.org/10.1186/1741-7007-7-38
  14. Heyn, H., and Esteller, M. (2012). DNA methylation profiling in the clinic: applications and challenges. Nat. Rev. Genet. 13, 679-692. https://doi.org/10.1038/nrg3270
  15. Hsiung, D., Marsit, C., Houseman, E., Eddy, K., Furniss, C., McClean, M., and Kelsey, K.T. (2007). Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma. Cancer Epidemiol. Biomarkers Prev. 16, 108-114. https://doi.org/10.1158/1055-9965.EPI-06-0636
  16. Kamei, Y., Suganami, T., Ehara, T., Kanai, S., Hayashi, K., Yamamoto, Y., Miura, S., Ezaki, O., Okano, M., and Ogawa, Y. (2010). Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity 18, 314-321. https://doi.org/10.1038/oby.2009.246
  17. Kheirandish-Gozal, L., Khalyfa, A., Gozal, D., Bhattacharjee, R., and Wang, Y. (2013). Endothelial dysfunction in children with obstructive sleep apnea is associated with epigenetic changes in the eNOS gene. Chest 143, 971-977. https://doi.org/10.1378/chest.12-2026
  18. Kim, K.Y., Kim, D.S., Lee, S.K., Lee, I.K., Kang, J.H., Chang, Y.S., Jacobs, D.R., Steffes, M., and Lee, D.H. (2009). Association of low-dose exposure to persistent organic pollutants with global DNA hypomethylation in healthy Koreans. Environ. Health Perspect. 118, 370-374. https://doi.org/10.1289/ehp.0901131
  19. Kim, J., Bhattacharjee, R., Khalyfa, A., Kheirandish-Gozal, L., Capdevila, O.S., Wang, Y., and Gozal, D. (2012). DNA methylation in inflammatory genes among children with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 185, 330-338. https://doi.org/10.1164/rccm.201106-1026OC
  20. Lin, J.D., Lin, P.Y., Chen, L.M., Fang, W.H., Lin, L.P., and Loh, C.H. (2010). Serum gutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) levels in children and adolescents with intellectual disabilities. Res. Dev. Disabil. 31, 172-177. https://doi.org/10.1016/j.ridd.2009.08.005
  21. Low, S., Chin, M.C., Ma, S., Heng, D., and Deurenberg-Yap, M. (2009). Rationale for redifining obesity in Asians. Ann. Acad. Med. Singapore 38, 66-69.
  22. Milagro, F.I., Gomez-Abellan, P., Campion, J., Martinez, J.A., Ordovas, J.M., and Garaulet, M. (2012). CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol. Int. 29, 1180-1194. https://doi.org/10.3109/07420528.2012.719967
  23. Ozanne, S.E., and Constancia, M. (2007). Mechanisms of disease: the developmental origins of disease and the role of the epigenotype. Nat. Clin. Pract. Endocrinol. Metab. 3, 539-546. https://doi.org/10.1038/ncpendmet0531
  24. Perng, W., Mora-Plazas, M., Marin, C., Rozek, L.S., Baylin, A., and Villamor, E. (2013). A prospective study of LINE-1 DNA methylation and development of adiposity in school-age children. PLoS One 8, e62587. https://doi.org/10.1371/journal.pone.0062587
  25. Peters, I., Vaske, B., Albrecht, K., Kuczyk, M.A., Jonas, U., and Serth, J. (2007). Adiposity and age are statistically related to enhanced RASSF1A tumor suppressor gene promoter methylation in normal autopsy kidney tissue. Cancer Epidemiol. Biomarkers Prev. 16, 2526-2532. https://doi.org/10.1158/1055-9965.EPI-07-0203
  26. Piyathilake, C., Badiga, S., Johanning, G., Alvarez, R., and Patridge, E. (2011). Predictors and health consequences of epigenetic changes associated with excess bodyweight in women of child-bearing age. Cancer Epidemiol. Biomarkers Prev. 20, 719.
  27. Ramkumar, N., Cheung, A.K., Pappas, L.M., Roberts, W.L., and Beddhu, S. (2004). Association of obesity with inflammation in chronic kidney disease: a cross-sectional disease. J. Ren. Nutr. 14, 201-207. https://doi.org/10.1016/S1051-2276(04)00133-5
  28. Regitz-Zagrosek, V., Lehmkuhl, E., and Mahmoodzadeh, S. (2007). Gender aspects of the role of the metabolic syndrome as a risk factor for cardiovascular disease. Gend Med. 4, S162-177. https://doi.org/10.1016/S1550-8579(07)80056-8
  29. Renehan, A.G., Tyson, M., Egger, M., Heller, R.F., and Zwahlen, M. (2008). Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569-578. https://doi.org/10.1016/S0140-6736(08)60269-X
  30. Rodenhister, D., and Mann, M. (2006). Epigenetics and human disease: translating basic biology into clinical application. CMAJ 174, 341-348. https://doi.org/10.1503/cmaj.050774
  31. Ryan, D.H., and Braverman-Panza, J. (2014). Obesity in women. J. Fam. Pract. 63, S15-20.
  32. Stenvinkel, P., Karimi, M., Johansson, S., Axelsson, J,. Suliman, M., Lindholm, B., Heimburger, O., Barany, P., Alvestrand, A., Nordfors, L., et al. (2007). Impact of inflammation on epigenetic DNA methylation-a novel risk factor for cardiovascular disease? J. Int. Med. 261, 488-499. https://doi.org/10.1111/j.1365-2796.2007.01777.x
  33. Sull, J.W., Yun, J.E., Lee, S.Y., Ohrr, H., Jee, S.H., Gualler, E., and Samet, J.M. (2009). Body mass index and serum aminotransferase levels in Korean men and women. J. Clin. Gastroenterol. 43, 869-875. https://doi.org/10.1097/MCG.0b013e3181945956
  34. Talens, R.P., Boomsma, D.I., Tobi, E.W., Kremer, D., Jukema, J.W., Willemsen, G., Putter, H., Slagboom, P.E., and Heijmans, B.T. (2010). Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J. 24, 3135-3144. https://doi.org/10.1096/fj.09-150490
  35. Terry, M.B., Delgado-Cruzatak, L., Vin-Raviv, N., Wu, H.C., and Santella, R.M. (2011). DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics 6, 828-837. https://doi.org/10.4161/epi.6.7.16500
  36. Vaiserman, A.M. (2011). Hormesis and epigenetics: Is there a link? Aging Res. Rev. 10, 413-421.
  37. van Driel, L.M., Eijkemans, M.J., de Jonge, R., de Vries, J.H., van Meurs, J.B., Steegers, E.A., and Steegers-Theunissen, R.P. (2009). BMI is an important determinant of methylation biomarkers in blood of women of reproductive ages. J. Nutr. 139, 2315-2321. https://doi.org/10.3945/jn.109.109710
  38. Veronelli, A., Laneri, M., Ranieri, R., Koprivec, D., Vardaro, D., Paganelli, M., Folli, F., and Pontiroli, A.E. (2004). White blood cells in obesity and diabetes: effects of weight loss and normalization in obesity and diabetes: effects of weight loss and normalization of glucose metabolism. Diabetes Care 27, 2501-2502. https://doi.org/10.2337/diacare.27.10.2501
  39. Wang, X., Zhu, H., Snieder, H., Su, S., Munn, D., Harshfield, G., Maria, B., Dong, Y., Treiber, F., Gutin, B., et al. (2010). Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med. 8, 87. https://doi.org/10.1186/1741-7015-8-87
  40. Weisenberger, D.J., Campan, M., Long, T.I., Kim, M., Woods, C., Fiala, E., Ehrlich, M., and Laird, P.W. (2005). Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res. 33, 6823-6836. https://doi.org/10.1093/nar/gki987
  41. Whitlock, G., Lewington, S., Sherliker, P., Clarke, R., Emberson, J., Halsey, J., Qizilbash, N., Collins, R., and Peto, R. (2009). Body-mass index and cause-specific mortality in 900000 adults: collaborative analyses of 57 prospective studies. Lancet 373, 1083-1096. https://doi.org/10.1016/S0140-6736(09)60318-4
  42. Wolin, K.Y., Carson, K., and Colditz, G.A. (2010). Obesity and cancer. Oncologist 15, 556-565. https://doi.org/10.1634/theoncologist.2009-0285
  43. Yang, A.S., Estecio, M.R.H., Doshi, K., Kondo, Y., Tajara, E.H., and Issa, J.P. (2004). A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 32, e38. https://doi.org/10.1093/nar/gnh032
  44. Yang, H.H., Hu, N., Wang, C., Ding, T., and Dunn, B.K. (2010). Influence of genetic background and tissue types on global DNA methylation patterns. PLoS One 5, e9355. https://doi.org/10.1371/journal.pone.0009355
  45. Ye, C., Shrubsole, M.J., Cai, Q., Ness, R., Grady, W.M., Smalley, W., Cai, H., Washington, K., and Zheng, W. (2006). Promoter methylation status of the MGMT, hMLH1, and CDKN2A/p16 genes in non-neoplastic mucosa of patients with and without colorectal adenomas. Oncol. Rep. 16, 429-435.
  46. Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S., and Badr, S. (1993). The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 328, 1230-1235. https://doi.org/10.1056/NEJM199304293281704
  47. Zhang, F.F., Cardarelli, R., Carroll, J., Fulda, K.G., Kaur, M., Gonzalez, K., Vishwanatha, J.K., Santella, R.M., and Morabia, A. (2011a). Significant difference in global genomic methylation by gender and race/ethnicity in peripheral blood. Epigenetics 6, 623-629. https://doi.org/10.4161/epi.6.5.15335
  48. Zhang, F.F., Santella, R.M., Wolff, M., Kappil, M.A., Markowitz, S.B., and Morabia, A. (2011b). White blood cell global methylation and IL-6 promoter methylation in association with diet and lifestyle risk factors in a cancer-free population. Epigenetics 6, 606-614.
  49. Zheng, W., McLerran, D.F., Rolland, B., Zhang, X., Inoue, M., Matsio, K., He, J., Gupta, P.C., Ramadas, K., Tsugane, S., et al. (2011). Association between body-mass index and risk of death in more than 1 million Asians. N. Engl. J. Med. 364, 719-729. https://doi.org/10.1056/NEJMoa1010679
  50. Zhu, Z.Z., Hou, L., Bollati, V., Tarantini, L., Marinelli, B., Cantone, L., Yang, A.S., Vokonas, P., Lissowska, J., Fustinoni, S., et al. (2012). Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis. Int. J. Epidemiol. 41, 126-139. https://doi.org/10.1093/ije/dyq154

Cited by

  1. Relationships between Global DNA Methylation in Circulating White Blood Cells and Breast Cancer Risk Factors vol.2017, 2017, https://doi.org/10.1155/2017/2705860
  2. Obesity accelerates epigenetic aging in middle-aged but not in elderly individuals vol.9, pp.1, 2017, https://doi.org/10.1186/s13148-016-0301-7
  3. Effect of alcohol consumption on peripheral bloodAlumethylation in Korean men vol.21, pp.3, 2016, https://doi.org/10.3109/1354750X.2015.1134661
  4. Methylation of the oxytocin receptor gene in clinically depressed patients compared to controls: The role of OXTR rs53576 genotype vol.65, 2015, https://doi.org/10.1016/j.jpsychires.2015.03.012
  5. Increased Methylation of Interleukin 6 Gene Is Associated with Obesity in Korean Women vol.38, pp.5, 2015, https://doi.org/10.14348/molcells.2015.0005
  6. Differential DNA methylation of MSI2 and its correlation with diabetic traits vol.12, pp.5, 2017, https://doi.org/10.1371/journal.pone.0177406
  7. Association of DNA methylation with age, gender, and smoking in an Arab population vol.7, pp.1, 2015, https://doi.org/10.1186/s13148-014-0040-6
  8. Association between DNA Methylation in Whole Blood and Measures of Glucose Metabolism: KORA F4 Study vol.11, pp.3, 2016, https://doi.org/10.1371/journal.pone.0152314
  9. Associations between adiposity and repetitive element DNA methylation in healthy postmenopausal women vol.9, pp.10, 2017, https://doi.org/10.2217/epi-2017-0047
  10. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome vol.104, pp.1, 2015, https://doi.org/10.1016/j.fertnstert.2015.04.005
  11. The Potential Use of DNA Methylation Biomarkers to Identify Risk and Progression of Type 2 Diabetes vol.6, 2015, https://doi.org/10.3389/fendo.2015.00043
  12. “Boomerang Neuropathology” of Late-Onset Alzheimer’s Disease is Shrouded in Harmful “BDDS”: Breathing, Diet, Drinking, and Sleep During Aging vol.28, pp.1, 2015, https://doi.org/10.1007/s12640-015-9528-x
  13. Global DNA methylation profiling in peripheral blood cells of South African women with gestational diabetes mellitus pp.1366-5804, 2018, https://doi.org/10.1080/1354750X.2018.1539770
  14. Epigenome-wide methylation differences in a group of lean and obese women – A HUNT Study vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34003-8
  15. INSIG2 rs7566605 single nucleotide variant and global DNA methylation index levels are associated with weight loss in a personalized weight reduction program vol.17, pp.1, 2014, https://doi.org/10.3892/mmr.2017.8039
  16. CBS promoter hypermethylation increases the risk of hypertension and stroke vol.74, pp.None, 2014, https://doi.org/10.6061/clinics/2019/e630