DOI QR코드

DOI QR Code

Proteome analysis of chloroplast proteins in stage albinism line of winter wheat (triticum aestivum) FA85

  • Hou, Dian-Yun (College of Life Science, Northwest A&F University) ;
  • Xu, Hong (College of Life Science, Northwest A&F University) ;
  • Du, Guang-Yuan (College of Life Science, Northwest A&F University) ;
  • Lin, Jun-Tang (Institute of Anatomy I, Friedrich Schiller University Jena) ;
  • Duan, Min (College of Life Science, Northwest A&F University) ;
  • Guo, Ai-Guang (College of Life Science, Northwest A&F University)
  • Published : 2009.07.31

Abstract

The "stage albinism line of winter wheat" FA85 was a specific natural mutant strain on leaf color. This physiological mutation was controlled by cytogene. In order to reveal the genetic and biochemical mechanism of albinism, 2-DE was used to investigate the difference of chloroplast protein expression pattern between FA85 and its parent wheat Aibian 1. From the results of 2-DE gels analysis, approximately 683 spots were detected on each gel, and 57 spots were expressed differently at least two-fold. Using MALDI-TOF/TOF MS, 14 of 57 spots were identified, which could be categorized into four classes: carbon metabolism, energy metabolism, defense/stress response and signal transduction. Compared with the parent wheat, the expression of ATPase-$\gamma$ and GP1-$\alpha$ was up-regulated in FA85, and of other proteins was down-regulated. Together, we concluded that the expression of chloroplast proteins had changed obviously in FA85, which might be related to the leaf color mutant.

Keywords

References

  1. Wu, Z. M. and Zhang, X. B. (2007) A chlorophyll-deficient rice mutant with impaired chlorophy-llide esterification in chlorophyll biosynthesis. Plant Physiol. 145, 29-40 https://doi.org/10.1104/pp.107.100321
  2. Terry, M. J. (1997) Phytochrome chromophore deficient mutants. Plant Cell Environ. 20, 740-745 https://doi.org/10.1046/j.1365-3040.1997.d01-102.x
  3. Kumar, A. M. and Soll, D. (2000) Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol. 122, 49-55 https://doi.org/10.1104/pp.122.1.49
  4. Terry, M. J. and Kendrick, R. E. (1999) Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol. 119, 143-152 https://doi.org/10.1104/pp.119.1.143
  5. Reyes, A. T., Barrett, J. E., Huber, D. J., Nell, T. A. and Clark, D. G. (2001) Leaf senescence in a non-yellowing cultivar of chrysanthemum (Dendranthema grandiflora). Physiol. Plantarum 111, 540-544 https://doi.org/10.1034/j.1399-3054.2001.1110415.x
  6. Zhao, Y. H., Guo, A. G. and Wang, P. H. (1996) Studies on the peroxidase Isozymes of the hybrid progenie different genotype wheat and albinism line. Acta Bot. Boreal. Occident. Sin. 16, 142-148
  7. Yang, L., Guo, A. G. and Xu, G. (2003) Studies on the chloroplast ultrastructure of 'stage albinism line the winter wheat' (SA) mutant during the albescent period. Acta Agri. Boreal. Occident. Sin. 12, 64-67
  8. Cheng, D. M., Fan, S. H., Liu, X. L. and Guo, A. G. (2006) Purification and sequence analysis of cDNA coding region for porphobilinogen deaminase from a stage albinism line of wheat. Chin. J. Biochem. Mol. Biol. 22, 973-978
  9. Ephritikhine, G., Ferro, M. and Rolland, N. (2004) Plant membrane proteomics. Plant Physiol. Bioch. 42, 943-962 https://doi.org/10.1016/j.plaphy.2004.11.004
  10. Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 https://doi.org/10.1038/35048692
  11. Aebersold, R. and Mann, M. (2003) Mass spectrometry- based proteomics. Nature 422, 198-207 https://doi.org/10.1038/nature01511
  12. Santoni, V., Molloy, M. and Rabilloud, T. (2000) Membrane proteins and proteomics. Electrophoresis 21, 1054-1070 https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1054::AID-ELPS1054>3.0.CO;2-8
  13. Sacha, B. and Wilhelm, G. (2004) Chloroplast proteomics: potentials and challenges. J. Exp. Bot. 55, 1213-1220 https://doi.org/10.1093/jxb/erh104
  14. Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005-1016 https://doi.org/10.1006/jmbi.2000.3903
  15. He, R. F., Ding, Y. and Yu, J. H. (2001) Analysis of leaf protein of the temperature-sensitive chlorophyll deficient rice mutants by two-dimensional electrophoresis. Acta Agronomica Sinica 27, 875-880
  16. Lonosky, P. M., Zhang, X. S., Vasant, G. H., Drena, L. D., Fu, A. G. and Steve, R. R. (2004) A proteomic analysis of maize chloroplast biogenesis. Plant Physiol. 134, 560-574 https://doi.org/10.1104/pp.103.032003
  17. Gong, X. S. and Yan, L. F. (1991) Improved procedure for purification of chloroplast DNA in higher plants.Chin. Sci. Bull. 6, 467-469
  18. Aluru, M. R., Bae, H., Wu, D. and Rodermel, S. R. (2001) The Arabidopsis immutans mutation affects plastid differentiation and the morphogenesis of white and green sectors in variegated plants. Plant Physiol. 127, 67-77 https://doi.org/10.1104/pp.127.1.67
  19. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  20. Patricia, M. L., Zhang, X. S., Vasant, G. H., Drena, L. D., Fu, A. G. and Steve, R. R. (2004) A proteomic analysis of maize chloroplast biogenesis. Plant Physiol. 134, 560-574 https://doi.org/10.1104/pp.103.032003
  21. Rodermel, S. R. and Bogorad, L. (1987) Molecular evolution and nucleotide sequencesof the maize plastid genes for the alpha subunit of CF1 (atpA) and the proteolipid subunit of CF0 (atpH). Genetics 116, 127-139
  22. Regina, M. and Shimon, G. (2000) Identification and characterization of a heat-induced isoform of aldolase in oat chloroplast. Plant Mol. Bio. 44, 487-498 https://doi.org/10.1023/A:1026528319769
  23. Frances, M. D. (2008) Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics. BMC Plant Biol. 1-19
  24. Churin, Y., Hess, W. R. and B$\ddot{o}$rner, T. (1999) Cloning and characterization of three cDNAs encoding chloroplast RNA-binding proteins from barley: differential regulation of expression by light and plastid development. Curr. Genet. 36, 173-181 https://doi.org/10.1007/s002940050488
  25. Ligia, L., Ana, S., Paula, M., Julie, C. and Helena, C. (2006) Phosphorylation and subsequent interaction with 14-3-3 proteins regulate plastid glutamine synthetase in Medicago truncatula. Planta 223, 558-567 https://doi.org/10.1007/s00425-005-0097-8
  26. Park, J. E., Kwon, H. J., Kang, Y. and Kim, Y. S. (2007) Proteomic Analysis of O-GlcNAc Modifications Derived from Streptozotocin and Glucosamine Induced $\beta$-cell Apoptosis. JBMB 40, 1058-1068 https://doi.org/10.5483/BMBRep.2007.40.6.1058
  27. Tucker, W. C., Du, Z., Hein, R., Gromet, E. Z. and Richter, M. L. (2001) Role of the ATP synthase αt subunit in conferring sensitivity to tentoxin. Biochemistry 26, 7542- 7548
  28. Yves, P., Cecile, B., David, K. and Popot, J. L. (1995) Purification and characterization of the cytochrome b6 f complex from chlamydomonas reinhardtii. J. Biol. Chem. 270, 29342-29349 https://doi.org/10.1074/jbc.270.49.29342
  29. Nover, L. (1991) Inducers of HSP synthesis: heat shock and chemical stressors; in Heat Shock Response, Nover, L. (ed): PP. 5-40, CRC Press, Florida, USA
  30. Ahsan, N, Lee, D. G., Lee, S. H. and Kang, K. Y. (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67, 1182-1193 https://doi.org/10.1016/j.chemosphere.2006.10.075
  31. Adrian, A. L., Paul, H. B., Dinakar, B. and Thomas, E. E. (1998) Heat-stress response of maize mitochondria. Plant physiol. 116, 1097-1110 https://doi.org/10.1104/pp.116.3.1097
  32. Dong, G. L., Nagib, A., Lee, S. H., Kang, K. Y., Jeong, D. B., Lee, I. J. and Lee, B. H. (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7, 3369-3383 https://doi.org/10.1002/pmic.200700266
  33. Schneider, E. and Hunke, S. (1998) ATP-bindingcassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol. Rev. 22, 1-20
  34. Moller, S. G., Kunkel, T. and Chua, N. H. (2001) A plastidic ABC protein involved in intercompartmen -tal communication of light signaling. Genes Dev. 15, 90-103 https://doi.org/10.1101/gad.850101
  35. Garcia, O., Bouige, P., Forestier, C. and Dassa, E. (2004) Inventory and comparative analysis of rice and arabidopsis ATP-binding cassette (ABC) systems. J. Mol. Biol. 343, 249-265 https://doi.org/10.1016/j.jmb.2004.07.093
  36. Sukla, R. and Mark, M. R. (2008) Submembraneous microtubule cytoskeleton: regulation of microtubule assembly by heterotrimeric G proteins. FEBS J. 275, 4654-4663 https://doi.org/10.1111/j.1742-4658.2008.06614.x
  37. Blum, H., Beier, H. and Gross, H. J. (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93-99 https://doi.org/10.1002/elps.1150080203
  38. Ming, L. I., Xiao, Z. Q., Chen, Z. C., Li, J. L., Li, C., Zhang, P. F. and Li, M.Y. (2007) Proteomic analysis of the aging-related proteins in human normal colon epithelial tissue. JBMB. 40, 72-81 https://doi.org/10.5483/BMBRep.2007.40.1.072
  39. Kim, S. T., Cho, K. S., Jang, Y. S. and Kang, K. Y. (2001) Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis 22, 2103-2109 https://doi.org/10.1002/1522-2683(200106)22:10<2103::AID-ELPS2103>3.0.CO;2-W
  40. Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. (1996) Mass spectrometric sequencing of proteins silver- stained polyacrylamide gels. Anal Chem. 68, 850-858 https://doi.org/10.1021/ac950914h

Cited by

  1. Differential Expression of Proteins in Response to Molybdenum Deficiency in Winter Wheat Leaves Under Low-Temperature Stress vol.32, pp.5, 2014, https://doi.org/10.1007/s11105-014-0713-5
  2. Proteomic Analysis of Leaves of the Chlorophyll-Deficient Wheat Mutant Mt6172 and Its Wild-Type through 2D-Difference Gel Electrophoresis vol.38, pp.9, 2012, https://doi.org/10.3724/SP.J.1006.2012.01592
  3. Effect of low temperature on chlorophyll biosynthesis in albinism line of wheat (Triticum aestivum) FA85 vol.145, pp.3, 2012, https://doi.org/10.1111/j.1399-3054.2012.01604.x
  4. Differential proteomic analysis of dwarf characteristics in cucumber (Cucumis sativus Linn.) stems vol.37, pp.1, 2015, https://doi.org/10.1007/s11738-014-1703-9
  5. Proteomic analysis of compatible and incompatible interactions of wheat with Puccinia triticina vol.96, 2016, https://doi.org/10.1016/j.pmpp.2016.06.007
  6. Differential Expression of Chloroplast Genes in Chlorophyll-Deficient Wheat Mutant Mt135 Derived from Space Mutagenesis vol.38, pp.11, 2013, https://doi.org/10.3724/SP.J.1006.2012.02122
  7. Nitrogen-Deficiency Stress Induces Protein Expression Differentially in Low-N Tolerant and Low-N Sensitive Maize Genotypes vol.7, 2016, https://doi.org/10.3389/fpls.2016.00298
  8. Comprehensive analysis of differently expressed genes and proteins in albino and green plantlets from a wheat anther culture vol.61, pp.2, 2017, https://doi.org/10.1007/s10535-016-0662-y
  9. Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar vol.9, pp.1, 2011, https://doi.org/10.1186/1477-5956-9-44
  10. Sequencing and phylogenetic analysis of the chloroplast genome of Pseudosasa japonica f. Akebonosuji vol.69, 2016, https://doi.org/10.1016/j.bse.2016.08.002
  11. RNA Editing Sites in Chloroplast Protein-coding Genes in Leaf White Mutant of Triticum aestivum vol.47, pp.6, 2012, https://doi.org/10.3724/SP.J.1259.2012.00581
  12. Characterization and fine mapping of a novel barley Stage Green-Revertible Albino Gene (HvSGRA) by Bulked Segregant Analysis based on SSR assay and Specific Length Amplified Fragment Sequencing vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-2015-1
  13. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta “Gold Standard” Leaves vol.17, pp.3, 2016, https://doi.org/10.3390/ijms17030346
  14. Candidate Genes for Yellow Leaf Color in Common Wheat (Triticum aestivum L.) and Major Related Metabolic Pathways according to Transcriptome Profiling vol.19, pp.6, 2018, https://doi.org/10.3390/ijms19061594
  15. Chloroplast structure and DNA methylation polymorphisms in an albino mutant of wheat (Triticum aestivum) cv. Xinong 1376 vol.69, pp.4, 2018, https://doi.org/10.1071/CP17471