DOI QR코드

DOI QR Code

Proteomic characterization of differentially expressed proteins associated with no stress in retinal ganglion cells

  • Kim, Jum-Ji (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Kim, Yeon-Hyang (Department of Biomedical Science, Hallym University) ;
  • Lee, Mi-Young (Department of Medical Biotechnology, Soonchunhyang University)
  • Published : 2009.07.31

Abstract

Proteomic analyses of differentially expressed proteins in rat retinal ganglion cells (RGC-5) following S-nitrosoglutathione (GSNO), an NO donor, treatment were conducted. Of the approximately 314 protein spots that were detected, 19 were differentially expressed in response to treatment with GSNO. Of these, 14 proteins were up-regulated and 5 were down- regulated. Notably, an increase in GAPDH expression following GSNO treatment was detected in RGC-5 cells through Western blotting as well as proteomics. The increased GAPDH expression in response to GSNO treatment was accompanied by an increase in Herc6 protein, an E3 ubiquitin ligase. Moreover, GSNO treatment resulted in the translocation of GADPH from the cytosol to the nucleus and its subsequent accumulation. These results suggest that NO stress-induced apoptosis may be associated with the nuclear translocation and accumulation of GAPDH in RGC-5 cells.

Keywords

References

  1. Sirover, M. A. (1997) Role of the glycolytic protein, glyceraldeyde- 3-phosphate dehydrogenase, in normal cell function and in cell pathology. J. Cell. Biochem. 66, 133-140 https://doi.org/10.1002/(SICI)1097-4644(19970801)66:2<133::AID-JCB1>3.0.CO;2-R
  2. Vaudry, D., Falluel-Morel, A., Leuillet, S., Vaudry, H. and Gonzalez, B. J. (2003) Regulators of cerebellar granule cell development act through specific signaling pathways. Science 300, 1532-1534 https://doi.org/10.1126/science.1085260
  3. Sirover, M. A. (2005) New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J. Cell. Biochem. 95, 45-52 https://doi.org/10.1002/jcb.20399
  4. Andrade, J., Pearce, S.T., Zhao, H. and Barroso, M. (2004) Interactions among p22, glyceraldehyde-3 phosphate dehydrogenase and microtubules. Biochem. J. 384, 327-336 https://doi.org/10.1042/BJ20040622
  5. Carujo, S., Estanyol, J. M., Ejarque, A., Agell, N., Bachs, O. and Pujol, M. J. (2006) Glyceraldehyde-3 phosphate dehydrogenase is a SET-binding protein and regulates cyclin B-cdk1 activity. Oncogene. 25, 4033-4042 https://doi.org/10.1038/sj.onc.1209433
  6. Cumming, R. C. and Schubert, D. (2005) Amyloid-$\beta$ induces disulfide bonding and aggregation of GAPDH in Alzheimer's disease. FASEB. J. 19, 2060-2062
  7. Sirover, M. A. (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehydes-3- dehydrogenase. Biochim. Biophys. Acta. 1432, 159-184 https://doi.org/10.1016/S0167-4838(99)00119-3
  8. Berry, M. D. and Boulton, A. A. (2000) Glyceraldehyde- 3-phosphate dehydrogenase and apoptosis. J. Neurosci. Res. 60, 150-154 https://doi.org/10.1002/(SICI)1097-4547(20000415)60:2<150::AID-JNR3>3.0.CO;2-4
  9. Yamaji, R., Fujita, K., Takahashi, S., Yoneda, H., Nagao, K., Masuda, W., Naito, M., Tsuruo, T., Miyatake, K., Inui, H. and Nakano, Y. (2000) Hypoxia up-regulates glyceraldehydes- 3-phosphate dehydrogenase in mouse brain capillary endothelial cells: involvement of $Na^+/Ca^+$ exchanger. Biochim. Biophys. Acta. 1593, 3269-3276
  10. Sawa, A., Khan, A, A., Hester, L. D. and Snyder, S. H. (1997) Glyceradehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and non-neuronal cell death. Proc. Natl. Acad. Sci. USA. 94, 11669-11674 https://doi.org/10.1073/pnas.94.21.11669
  11. Ishitani, R., Tanaka, M., Sunaga, K., Katsube, N. and Chuang, D, M. (1998) Nuclear localization of over-expressed glyceradehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol. Pharmacol. 53, 701-707
  12. Dastoor, Z. and Dreyer, J. L. (2001) Potential role of nuclear translocation of glyceradehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J. Cell. Sci. 114, 1643-1653
  13. Hara, M. R., Agrawal, N., Kim, S. F., Cascio, M. B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J. H., Tankou, S. K., Hester, L. D., Ferris, C. D., Diane Hayward, S., Snyder, S. H. and Sawa, A. (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell. Biol. 7, 665-674 https://doi.org/10.1038/ncb1268
  14. Hara, M. R., Cascio, M. B. and Sawa, A. (2006) GAPDH as a sensor of NO stress. Biochim. Biophys. Acta. 1762, 502-509 https://doi.org/10.1016/j.bbadis.2006.01.012
  15. Hara. M. R. and Snyder, S. H. (2006) Nitric oxide- GAPDH-Siah: a novel cell death cascade. Cell. Mol. Neurobiol. 26, 527-538
  16. Barbini, L., Rodriguez, J., Dominiguez, F. and Vega, F. (2007) Glyceraldehyde-3-phosphate dehydrogenase exerts different biologic activities in apoptotic and proliferating hepatocytes according to its subcellular localization. Mol. Cell. Biochem. 300, 19-28 https://doi.org/10.1007/s11010-006-9341-1
  17. Saunders, P. A., Chen, R. W. and Chuang, D. M. (1999) Nuclear translocation of glyceradehyde-3-phosphate dehydrogenase isoforms during neuronal apoptosis. J. Neurochem. 72, 925-932 https://doi.org/10.1046/j.1471-4159.1999.0720925.x
  18. Moriyoshi, K., Iijima, K., Fujii, H., Ito, H., Cho, Y. and Nakanishi, S. (2004) Seven in absentia homolog 1A mediates ubiquitination and degradation of group 1 metabotropic glutamate receptors. Proc. Natl. Acad. Sci. U.S.A. 101, 8614-8619 https://doi.org/10.1073/pnas.0403042101
  19. Kim, C. I., Lee, S. H., Seong, G. J., Kim, Y. H. and Lee, M. Y. (2006) Nuclear translocation and overexpression of GAPDH by the hyper-pressure in retinal ganglion cell. Biochem. Biophys. Res. Commun. 341, 1237-1243 https://doi.org/10.1016/j.bbrc.2006.01.087
  20. Kamoshima, W., Kitamura, Y., Nomura, Y. and Taniguchi, T. (1997) Possible involvement of ADP ribosylation of particular enzymes in cell death induced by nitric oxide-donors in human neuroblastoma cells. Neurochem. Int. 30, 305-311 https://doi.org/10.1016/S0197-0186(96)00091-5
  21. Bae, B, I., Hara, M. R., Cascio, M. B., Wellington, C. L., Hayden, M. R., Ross, C. A., Ha, H. C., Li, X. J., Synder, S. H. and Sawa, A. (2006) Mutant Huntingtin: nuclear translocation and cytotoxicity mediated by GAPDH. Proc. Natl. Acad. Sci. U.S.A. 103, 3405-3409 https://doi.org/10.1073/pnas.0511316103
  22. Kusner, L. L., Sarthy, V. P. and Mohr, S. (2004) Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase: a role in high glucose-induced apoptosis in retinal Muller cells. Invest. Ophthalmol. Vis. Sci. 45, 1553-1561
  23. Brown, V. M., Krynetski, E. Y., Krynetskaia, N. F., Grieger, D., Mukatira, S. T., Murti, K. G., Slaughter, C. A., Park, H. W. and Evans, W. E. (2004) A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde- 3-phosphate dehydrogenase following genotoxic stress. J. Biol. Chem. 279, 5984-5992 https://doi.org/10.1074/jbc.M307071200
  24. Mazzola, J. L. and Sirover, M. A. (2002) Alteration of nuclear glyceradehyde-3-phosphate dehydrogenase structure in Huntington's disease fibroblasts. Mol. Brain. Res. 100, 95-101 https://doi.org/10.1016/S0169-328X(02)00160-2
  25. Mazzola, J. L. and Sirover, M. A. (2003) Subcellular alteration of glyceraldehyde-3-phosphate dehydrogenase in Alzheimer's disease fibroblasts. J. Neurosci. Res. 71, 279-285 https://doi.org/10.1002/jnr.10484
  26. Surgucheva, I., Weisman, A. D., Goldberg, J. L., Shnyra, A. and Surguchov, A. (2008) $\gamma$-Synuclein as a marker of retinal ganglion cells. Mol. Vis. 14, 1540-1548
  27. Kang, D. K. and Lee, M. Y. (2007) Photoprotective effects of minerals from Korean indigenous ores on uva-irradiated human dermal fibroblast. Mol. Cell. Toxicol. 4, 150-156
  28. Jeon, Y. M., Ryu, J. C. and Lee, M. Y. (2007) Proteomic analysis of differentially expressed proteins in human lung cells following formaldehyde treatment. Mol. Cell. Toxicol. 3, 238-245

Cited by

  1. Differential protein expression associated with photodynamic therapy using chlorin e6 vol.10, pp.4, 2014, https://doi.org/10.1007/s13273-014-0047-2
  2. Retinal proteomic changes following unilateral optic nerve transection and early experimental glaucoma in non-human primate eyes vol.93, pp.1, 2011, https://doi.org/10.1016/j.exer.2011.03.020
  3. Proteomic profiling of differentially expressed proteins after exposure to asbestos vol.7, pp.3, 2013, https://doi.org/10.1007/s13206-013-7304-7
  4. p53 is not necessary for nuclear translocation of GAPDH during NO-induced apoptosis vol.44, pp.12, 2011, https://doi.org/10.5483/BMBRep.2011.44.12.782
  5. Gold nanoparticles trigger apoptosis and necrosis in lung cancer cells with low intracellular glutathione vol.15, pp.8, 2013, https://doi.org/10.1007/s11051-013-1745-8
  6. Proteomic analysis of the differentially expressed proteins by airborne nanoparticles vol.31, pp.5, 2011, https://doi.org/10.1002/jat.1658
  7. Glyceraldehyde-3-phosphate Dehydrogenase Gene from HalophyteAeluropus lagopoides: Identification and Characterization vol.27, pp.3, 2013, https://doi.org/10.1080/15427528.2013.766294
  8. The potential impact of recent insights into proteomic changes associated with glaucoma vol.14, pp.4, 2017, https://doi.org/10.1080/14789450.2017.1298448
  9. The Ubiquitin–Proteasome System in Retinal Health and Disease vol.47, pp.2, 2013, https://doi.org/10.1007/s12035-012-8391-5
  10. Chaiqinchengqi decoction regulates necrosis-apoptosis via regulating the release of mitochondrial cytochrome c and caspase-3 in rats with acute necrotizing pancreatitis vol.34, pp.2, 2014, https://doi.org/10.1016/S0254-6272(14)60075-3