• 제목/요약/키워드: Protein structural dynamics

검색결과 54건 처리시간 0.022초

Mutation Effects on FAS1 Domain 4 Related to Protein Aggregation by Molecular Dynamics Simulations and Solvation Free Energy Analysis

  • Cho, Sunhee;Ham, Sihyun
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.70-75
    • /
    • 2015
  • Fasciclin 1 (FAS1) is an extracellular protein whose aggregation in cornea leads to visual impairment. While a number of FAS1 mutants have been studied that exhibit enhanced/decreased aggregation propensity, no structural information has been provided so far that is associated with distinct aggregation potential. In this study, we have investigated the structural and thermodynamic characteristics of the wild-type FAS1 and its two mutants, R555Q and R555W, by using molecular dynamics simulations and three-dimensional reference interaction site model (3D-RISM) theory. We find that the hydrophobic solvent accessible surface area increases due to hydrophobic core repacking in the C-terminus caused by the mutation. We also find that the solvation free energy of the mutants increases due to the enhanced non-native H-bonding. These structural and thermodynamic changes upon mutation contribute to understand the aggregation of these mutants.

  • PDF

The Homeobox and Genetic Disease: Structure and Dynamics of Wild Type and Mutant Homeodomain Proteins

  • Ferretti, James A.
    • BMB Reports
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2001
  • Structural and physical properties of type wild type and various selected mutants of the vnd/NK-2 homeodomain, the protein product of the homeobox, and the implication in genetic disease are reviewed. The structure, dynamics and thermodynamics have been Investigated by NMR and by calorimetry. The interactions responsible for the nucleotide sequence-specific binding of the homeodomain to its consensus DNA binding site have been identified. There is a strong correlation between significant structural alterations within the homeodomain or its DNA complex and the appearance of genetic disease. Mutations in positions known to be important in genetic disease have been examined carefully For example, mutation of position 52 of vnd/NK-2 results in a significant structural modification and mutation of position 54 alters the DNA binding specificity and amity The $^{15}N$ relaxation behavior and heteronuclear Overhauser effect data was used to characterize and describe the protein backbone dynamics. These studies were carried out on the wild type and the double mutant proteins both in the free and in the DNA bound states. Finally, the thermodynamic properties associated with DNA binding are described for the vnd/NK-2 homeodomain. These thermodynamic measurements reinforce the hypothesis that water structure around a protein and around DNA significantly contribute to the protein-DNA binding behavior. The results, taken together, demonstrate that structure and dynamic studies of proteins combined with thermodynamic measurements provide a significantly more complete picture of the solution behavior than the individual studies.

  • PDF

Structural and Thermodynamic Characteristics of cHLH Peptide and cHLH/HDM2 Complex

  • Im, Haeri;Cho, Sunhee;Ham, Sihyun
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.62-66
    • /
    • 2016
  • Tumor suppressor protein p53 loses its function upon binding with the HDM2 protein, and inhibiting the p53-HDM2 interaction is critical to suppress tumor cell growth. Recently, the cyclized helix-loop-helix peptide (cHLH) mimicking the ${\alpha}-helix$ part of the p53 protein has been designed and found to exhibit high binding affinity with HDM2. Here, we report the structural and thermodynamic characteristics of the bound complex of the cHLH peptide with the HDM2 protein. We performed molecular dynamics simulations to investigate the structural features of the cHLH peptide as well as its complex with the HDM2. The binding free energy calculation based on the integral equation theory was also executed to quantify the binding affinity for the cHLH/HDM2 complex and to understand the factors contributing to the binding affinity. We found a variety of factors for the helix stability of the cHLH peptide as well as in the complexation with the HDM2, which may provide an insight into the development of anti-cancer drug designs.

  • PDF

Biological Network Evolution Hypothesis Applied to Protein Structural Interactome

  • Bolser, Dan M.;Park, Jong Hwa
    • Genomics & Informatics
    • /
    • 제1권1호
    • /
    • pp.7-19
    • /
    • 2003
  • The latest measure of the relative evolutionary age of protein structure families was applied (based on taxonomic diversity) using the protein structural interactome map (PSIMAP). It confirms that, in general, protein domains, which are hubs in this interaction network, are older than protein domains with fewer interaction partners. We apply a hypothesis of 'biological network evolution' to explain the positive correlation between interaction and age. It agrees to the previous suggestions that proteins have acquired an increasing number of interaction partners over time via the stepwise addition of new interactions. This hypothesis is shown to be consistent with the scale-free interaction network topologies proposed by other groups. Closely co-evolved structural interaction and the dynamics of network evolution are used to explain the highly conserved core of protein interaction pathways, which exist across all divisions of life.

Molecular Dynamics of the M intermediate of photoactive yellow protein in solution

  • Sakurai, Minoru;Shiozawa, Mariko;Arai, Shohei;Inoue, Yoshio;Kamiya, Narutoshi;Higo, Junichi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.134-137
    • /
    • 2002
  • PYP consists of a water-soluble apoprotein and 4-hydroxycinnamyl chromophore bound to Cys69 via thiolester linkage, Upon absorption of a photon, the photocycle is initiated, leading to formation of several photo-intermediates. Among them, M intermediate is important to understand the signal transduction mechanism of PYP, because it is a putative signaling state. As well known, the dynamics of a protein is closely correlated with the occurrence of its function. Here we report the results of IO ns molecular dynamics (MD) simulation for the M intermediate in aqueous solution and discuss the characteristic feature of this state from a viewpoint of structural fluctuation.

  • PDF

Molecular Dynamics of the C-Terminal Domain Mouse CDT1 Protein

  • Khayrutdinov, Bulat I.;Bae, Won-Jin;Kim, Jeong-Ju;Hwang, Eun-Ha;Yun, Young-Mi;Ryu, Kyoung-Seok;Cheong, Hae-Kap;Kim, Yu-Gene;Cho, Yun-Je;Jeon, Young-Ho;Cheong, Chae-Joon
    • 한국자기공명학회논문지
    • /
    • 제11권1호
    • /
    • pp.30-41
    • /
    • 2007
  • The backbone molecular dynamics of the C-terminal part of the mouse Cdt1 protein (tCdt1, residues 420-557) was studied by high field NMR spectroscopy. The Secondary structure of this protein was suggested by analyzing of chemical shift of backbone atoms with programs TALOS and PECAN, together with NOE connectivities from 3D $^{15}N-HSQC-NOESY$ data. Measurement of dynamic parameters $T_1,\;T_2$ and NOE and limited proteolysis experiment provided information for domain organization of tCdt1(420-557). Analysis of the experimental data showed that the C-terminal part of the tCdt1 has well folded domain for residues 455-553. The residues 420-453 including ${\alpha}-helix$ (432-441) are flexible and probably belong to other functional domain in intact full length Cdt1 protein.

  • PDF

Protein Structural Characterization by Hydrogen/Deuterium Exchange Mass Spectrometry with Top-down Electron Capture Dissociation

  • Yu, Hai Dong;Ahn, Seonghee;Kim, Byungjoo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1401-1406
    • /
    • 2013
  • This study tested the feasibility of observing H/D exchange of intact protein by top-down electron capture dissociation (ECD) mass spectrometry for the investigation of protein structure. Ubiquitin is selected as a model system. Local structural information was obtained from the deuteration levels of c and $z^{\cdot}$ ions generated from ECD. Our results showed that ${\alpha}$-helix region has the lowest deuteration level and the C-terminal fraction containing a highly mobile tail has the highest deuteration level, which correlates well with previous X-Ray and HDX/NMR analyses. We studied site-specific H/D exchange kinetics by monitoring H/D exchange rate of several structural motives of ubiquitin. Two hydrogen bonded ${\beta}$-strands showed similar HDX rates. However, the outer ${\beta}$-strand always has higher deuteration level than the inner ${\beta}$-strand. The HDX rate of the turn structure (residues 8-11) is lower than that of ${\beta}$-strands (residues 1-7 and residues 12-17) it connects. Although isotopic distribution gets broader after H/D exchange which results in a limited number of backbone cleavage sites detected, our results demonstrate that this method can provide valuable detailed structural information of proteins. This approach should also be suitable for the structural investigation of other unknown proteins, protein conformational changes, as well as protein-protein interactions and dynamics.

Structural flexibility of Escherichia coli IscU, the iron-sulfur cluster scaffold protein

  • Kim, Bokyung;Kim, Jin Hae
    • 한국자기공명학회논문지
    • /
    • 제24권3호
    • /
    • pp.86-90
    • /
    • 2020
  • Iron-sulfur (Fe-S) clusters are one of the most ancient yet essential cofactors mediating various essential biological processes. In prokaryotes, Fe-S clusters are generated via several distinctive biogenesis mechanisms, among which the ISC (Iron-Sulfur Cluster) mechanism plays a house-keeping role to satisfy cellular needs for Fe-S clusters. The Escherichia coli ISC mechanism is maintained by several essential protein factors, whose structural characterization has been of great interest to reveal mechanistic details of the Fe-S cluster biogenesis mechanisms. In particular, nuclear magnetic resonance (NMR) spectroscopic approaches have contributed much to elucidate dynamic features not only in the structural states of the protein components but also in the interaction between them. The present minireview discusses recent advances in elucidating structural features of IscU, the key player in the E. coli ISC mechanism. IscU accommodates exceptional structural flexibility for its versatile activities, for which NMR spectroscopy was particularly successful. We expect that understanding to the structural diversity of IscU provides critical insight to appreciate functional versatility of the Fe-S cluster biogenesis mechanism.