DOI QR코드

DOI QR Code

Structural flexibility of Escherichia coli IscU, the iron-sulfur cluster scaffold protein

  • Kim, Bokyung (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Kim, Jin Hae (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology)
  • Received : 2020.09.15
  • Accepted : 2020.09.18
  • Published : 2020.09.20

Abstract

Iron-sulfur (Fe-S) clusters are one of the most ancient yet essential cofactors mediating various essential biological processes. In prokaryotes, Fe-S clusters are generated via several distinctive biogenesis mechanisms, among which the ISC (Iron-Sulfur Cluster) mechanism plays a house-keeping role to satisfy cellular needs for Fe-S clusters. The Escherichia coli ISC mechanism is maintained by several essential protein factors, whose structural characterization has been of great interest to reveal mechanistic details of the Fe-S cluster biogenesis mechanisms. In particular, nuclear magnetic resonance (NMR) spectroscopic approaches have contributed much to elucidate dynamic features not only in the structural states of the protein components but also in the interaction between them. The present minireview discusses recent advances in elucidating structural features of IscU, the key player in the E. coli ISC mechanism. IscU accommodates exceptional structural flexibility for its versatile activities, for which NMR spectroscopy was particularly successful. We expect that understanding to the structural diversity of IscU provides critical insight to appreciate functional versatility of the Fe-S cluster biogenesis mechanism.

Keywords

References

  1. H. Beinert, R. H. Holm, and E. Munck, Science 277, 653 (1997) https://doi.org/10.1126/science.277.5326.653
  2. D. C. Johnson, D. R. Dean, A. D. Smith, and M. K. Johnson, Annu. Rev. Biochem. 74, 247 (2005) https://doi.org/10.1146/annurev.biochem.74.082803.133518
  3. R. Lill, Nature 460, 831 (2009) https://doi.org/10.1038/nature08301
  4. T. A. Rouault and W. H. Tong, Nat. Rev. Mol. Cell Biol. 6, 345 (2005) https://doi.org/10.1038/nrm1620
  5. D. R. Crooks, N. Maio, A. N. Lane, M. Jarnik, R. M. Higashi, R. G. Haller, Y. Yang, T. W. M. Fan, W. Marston Linehan, and T. A. Rouault, J. Biol. Chem. 293, 8297 (2018) https://doi.org/10.1074/jbc.RA118.001885
  6. F. Prischi, C. Pastore, M. Carroni, C. Iannuzzi, S. Adinolfi, P. Temussi, and A. Pastore, Protein Expr. Purif. 73, 161 (2010) https://doi.org/10.1016/j.pep.2010.05.003
  7. J. Kim, M. Tonelli, and J. L. Markley, Proc. Natl. Acad. Sci. U. S. A. 109, 454 (2012) https://doi.org/10.1073/pnas.1114372109
  8. J. Kim, R. O. Frederick, N. M. Reinen, A. T. Troupis, and J. L. Markley, J. Am. Chem. Soc. 135, 8117 (2013) https://doi.org/10.1021/ja401950a
  9. J. Kim, J. R. Bothe, R. O. Frederick, J. C. Holder, and J. L. Markley, J. Am. Chem. Soc. 136, 7933 (2014) https://doi.org/10.1021/ja501260h
  10. Z. Dai, M. Tonelli, and J. L. Markley, Biochemistry 51, 9595 (2012) https://doi.org/10.1021/bi301413y
  11. F. Bonomi, S. Iametti, D. Ta, and L. E. Vickery, J. Biol. Chem. 280, 29513 (2005) https://doi.org/10.1074/jbc.M504344200
  12. F. Bonomi, S. Iametti, A. Morleo, D. Ta, and L. E. Vickery, Biochemistry 47, 12795 (2008) https://doi.org/10.1021/bi801565j
  13. J. Kim, A. K. Fuzery, M. Tonelli, D. Ta, W. M. Westler, L. E. Vickery, and J. L. Markley, Biochemistry 48, 6062 (2009) https://doi.org/10.1021/bi9002277
  14. H. S. Alhajala, J. L. Markley, J. Kim, M. M. Al-Gizawiy, K. M. Schmainda, J. S. Kuo, and C. R. Chitambar, Oncotarget 11, 1531 (2020) https://doi.org/10.18632/oncotarget.27567
  15. T. A. Ramelot, J. R. Cort, S. Goldsmith-Fischman, G. J. Kornhaber, R. Xiao, R. Shastry, T. B. Acton, B. Honig, G. T. Montelione, and M. A. Kennedy, J. Mol. Biol. 344, 567 (2004) https://doi.org/10.1016/j.jmb.2004.08.038
  16. J. Liu, N. Oganesyan, D. H. Shin, J. Jancarik, H. Yokota, R. Kim, and S. H. Kim, Proteins Struct. Funct. Genet. 59, 875 (2005) https://doi.org/10.1002/prot.20421
  17. J. Kim, M. Tonelli, T. Kim, and J. L. Markley, Biochemistry 51, 5557 (2012) https://doi.org/10.1021/bi300579p
  18. K. Cai, R. O. Frederick, J. Kim, N. M. Reinen, M. Tonelli, and J. L. Markley, J. Biol. Chem. 288, 28755 (2013) https://doi.org/10.1074/jbc.M113.482042
  19. Z. Dai, J. Kim, M. Tonelli, I. K. Ali, and J. L. Markley, Biochemistry 53, 5290 (2014) https://doi.org/10.1021/bi500313t
  20. J. Kim, J. R. Bothe, T. R. Alderson, and J. L. Markley, Biochim. Biophys. Acta 1853, 1416 (2015) https://doi.org/10.1016/j.bbamcr.2014.11.020
  21. R. Shi, A. Proteau, M. Villarroya, I. Moukadiri, L. Zhang, J. F. Trempe, A. Matte, E. Armengod, and M. Cygler, PLoS Biol. 8, e1000354 (2010) https://doi.org/10.1371/journal.pbio.1000354
  22. M. T. Boniecki, S. A. Freibert, U. Muhlenhoff, R. Lill, and M. Cygler, Nat. Commun. 8, 1287 (2017) https://doi.org/10.1038/s41467-017-01497-1
  23. D. di Maio, B. Chandramouli, R. Yan, G. Brancato, and A. Pastore, A. Biochim. Biophys. Acta 1861, 3154 (2017)
  24. Y. Shimomura, K. Wada, K. Fukuyama, and Y. Takahashi, J. Mol. Biol. 383, 133 (2008) https://doi.org/10.1016/j.jmb.2008.08.015
  25. J. R. Cupp-Vickery, J. C. Peterson, D. T. Ta, and L. E. Vickery, J. Mol. Biol. 342, 1265 (2004) https://doi.org/10.1016/j.jmb.2004.07.025
  26. J. Kim, M. Tonelli, R. O. Frederick, D. C. F. Chow, and J. L. Markley, J. Biol. Chem. 287, 31406 (2012) https://doi.org/10.1074/jbc.M112.352617
  27. R. Puglisi and A. Pastore, FEBS Lett. 592, 4011 (2018) https://doi.org/10.1002/1873-3468.13245
  28. R. Lill and U. Muhlenhoff, Annu. Rev. Biochem. 77, 669 (2008) https://doi.org/10.1146/annurev.biochem.76.052705.162653
  29. M. Lella and R. Mahalakshmi Biochemistry 56, 2971 (2017) https://doi.org/10.1021/acs.biochem.7b00375
  30. T. A. Rouault, Biometals 32, 343 (2019) https://doi.org/10.1007/s10534-019-00191-7
  31. N. Maio, A. Jain, and T. A. Rouault, Curr. Opin. Chem. Biol. 55, 34 (2020) https://doi.org/10.1016/j.cbpa.2019.11.014
  32. S. A. Cory, J. G. Van Vranken, E. J. Brignole, S. Patra, D. R. Winge, C. L. Drennan, J. Rutter, and D. P. Barondeau, Proc. Natl. Acad. Sci. U. S. A. 114, E5325 (2017) https://doi.org/10.1073/pnas.1702849114
  33. N. G. Fox, X. Yu, X. Feng, H. J. Bailey, A. Martelli, J. F. Nabhan, C. Strain-Damerell, C. Bulawa, W. W. Yue, and S. Han, Nat. Commun. 10, 2210 (2019) https://doi.org/10.1038/s41467-019-09989-y