DOI QR코드

DOI QR Code

NMR-based structural characterization of transthyretin in its aggregation-prone state

  • Kim, Bokyung (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Kim, Jin Hae (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology)
  • Received : 2020.09.18
  • Accepted : 2020.09.19
  • Published : 2020.09.20

Abstract

Transthyretin (TTR) is an abundant protein in blood plasma and cerebrospinal fluid (CSF), working as a homo-tetrameric complex to transport thyroxine (T4) and a holo-retinol binding protein. TTR is well-known for its amyloidogenic property; several types of systemic amyloidosis diseases are caused by aggregation of either wild-type TTR or its variants, for which more than 100 mutations were reported to increase the amyloidogenicity of TTR. The rate-limiting step of TTR aggregation is the dissociation of a monomeric subunit from a tetrameric complex. A wide range of biochemical and biophysical techniques have been employed to elucidate the TTR aggregation processes, among which nuclear magnetic resonance (NMR) spectroscopy contributed much to characterize the structural and functional features of TTR during its aggregation processes. The present review focuses on discussing the recent advances of our understanding to the amyloidosis mechanism of TTR and to the structural features of its monomeric aggregation-prone state in solution. We expect that the present review provides novel insights to appreciate the molecular basis of TTR amyloidosis and to develop novel therapeutic strategies to treat diverse TTR-related diseases.

Keywords

References

  1. M. A. Liz, F. M. Mar, F. Franquinho, and M. M. Sousa, IUBMB Life 62, 429 (2010) https://doi.org/10.1002/iub.340
  2. E. A. Kabat, D. H. Moore, and H. Landow, J. Clin. Invest. 21, 571 (1942) https://doi.org/10.1172/JCI101335
  3. D. R. Soprano, J. Herbert, K. J. Soprano, E. A. Schon, and D. S. Goodman, J. Biol. Chem. 260, 11793 (1985) https://doi.org/10.1016/S0021-9258(17)39100-7
  4. C. C. F. Blake and I. D. A. Swan, J. Mol. Biol. 61, 217 (1971) https://doi.org/10.1016/0022-2836(71)90218-x
  5. C. C. F. Blake, M. J. Geisow, S. J. Oatley, B. Rerat, and C. Rerat, J. Mol. Biol. 121, 339 (1978) https://doi.org/10.1016/0022-2836(78)90368-6
  6. J. A. Hamilton and M. D. Benson, Cell. Mol. Life Sci. 58, 1491 (2001) https://doi.org/10.1007/PL00000791
  7. A. Wojtczak, V. Cody, J. R. Luft, and W. Pangborn, Acta Crystallogr. Sect. D Biol. Crystallogr. 52, 758 (1996) https://doi.org/10.1107/S0907444996003046
  8. V. Plante-Bordeneuve and G. Said, Curr. Opin. Neurol. 13, 569 (2000) https://doi.org/10.1097/00019052-200010000-00011
  9. J. Rubin and M. S. Maurer, Annu. Rev. Med. 71, 203 (2020) https://doi.org/10.1146/annurev-med-052918-020140
  10. L. H. Connors, A. Lim, T. Prokaeva, V. A. Roskens, and C. E. Costello, Amyloid 10, 160 (2003) https://doi.org/10.3109/13506120308998998
  11. J. N. Buxbaum and F. L. Ruberg, Genetics in Medicine 19, 733 (2017) https://doi.org/10.1038/gim.2016.200
  12. K. Choi, J. M. Seok, B. J. Kim, Y. C. Choi, H .Y. Shin, I. N. Sunwoo, D. S. Kim, J. J. Sung, G. Y. Lee, E. S. Jeon, N. H. Kim, J. H. Min, and J. Oh, J. Clin. Neurol. 14, 537 (2018) https://doi.org/10.3988/jcn.2018.14.4.537
  13. H. H. Schmidt, M. Waddington-Cruz, M. F. Botteman, J. A. Carter, A. S. Chopra, M. Hopps, M. Stewart, S. Fallet, and L. Amass, Muscle and Nerve 57, 829 (2018) https://doi.org/10.1002/mus.26034
  14. P. P. Costa, A. S. Figueira, and F. R. Bravo, Proc. Natl. Acad. Sci. U. S. A. 75, 4499 (1978) https://doi.org/10.1073/pnas.75.9.4499
  15. A. Gustavsson, U. Engstrom, and P. Westermark, Biochem. Biophys. Res. Commun. 175, 1159 (1991) https://doi.org/10.1016/0006-291X(91)91687-8
  16. W. Colon, and J. W. Kelly, Biochemistry 31, 8654 (1992) https://doi.org/10.1021/bi00151a036
  17. Z. Lai, W. Colon, and J. W. Kelly, Biochemistry 35, 6470 (1996) https://doi.org/10.1021/bi952501g
  18. K. Liu, J. W. Kelly, and D. E. Wemmer, J. Mol. Biol. 320, 821 (2002) https://doi.org/10.1016/S0022-2836(02)00471-0
  19. S. M. Johnson, S. Connelly, C. Fearns, E. T. Powers, and J. W. Kelly, J. Mol. Biol. 421, 185 (2012) https://doi.org/10.1016/j.jmb.2011.12.060
  20. P. Westermark, K. Sletten, B. Johansson, and G. G. Cornwell, Proc. Natl. Acad. Sci. U. S. A. 87, 2843 (1990) https://doi.org/10.1073/pnas.87.7.2843
  21. P. P. Mangione, G. Verona, A. Corazza, J. Marcoux, D. Canetti, S. Giorgetti, S. Raimondi, M. Stoppini, M. Esposito, A. Relini, C. Canale, M. Valli, L. Marchese, G. Faravelli, L. Obici, P. N. Hawkins, G. W. Taylor, J. D. Gillmore, M. B. Pepys, and V. Bellotti, J. Biol. Chem. 293, 14192 (2018) https://doi.org/10.1074/jbc.RA118.003990
  22. B. I. Leach, X. Zhang, J. W. Kelly, H. J. Dyson, and P. E. Wright, Biochemistry 57, 4421 (2018) https://doi.org/10.1021/acs.biochem.8b00642
  23. A. W. Yee, M. Aldeghi, M. P. Blakeley, A. Ostermann, P. J. Mas, M. Moulin, D. de Sanctis, M. W. Bowler, C. Mueller-Dieckmann, E. P. Mitchell, M. Haertlein, B. L. de Groot, E. Boeri Erba, and V. T. Forsyth, Nat. Commun. 10, 1 (2019) https://doi.org/10.1038/s41467-018-07882-8
  24. H. Razavi, S. K. Palaninathan, E. T. Powers, R. L. Wiseman, H. E. Purkey, N. N. Mohamedmohaideen, S. Deechongkit, K. P. Chiang, M. T. A. Dendle, J. C. Sacchettini, and J. W. Kelly, Angew. Chemie - Int. Ed. 42, 2758 (2003) https://doi.org/10.1002/anie.200351179
  25. S. M. Johnson, R. L. Wiseman, Y. Sekijima, N. S. Green, S. L. Adamski-Werner, and J. W. Kelly, Acc. Chem. Res. 38, 911 (2005) https://doi.org/10.1021/ar020073i
  26. C. E. Bulawa, S. Connelly, M. DeVit, L. Wang, C. Weigel, J. A. Fleming, J. Packman, E. T. Powers, R. L. Wiseman, T. R. Foss, I. A. Wilson, J. W. Kelly, and R. Labaudiniere, Proc. Natl. Acad. Sci. U. S. A. 109, 9629 (2012) https://doi.org/10.1073/pnas.1121005109
  27. J. Park, U. Egolum, S. Parker, E. Andrews, D. Ombengi, and H. Ling, Ann. Pharmacother. 54, 470 (2020) https://doi.org/10.1177/1060028019888489
  28. M. L. Muller, J. Butler, and B. Heidecker, Eur. J. Heart Fail. 22, 39 (2020) https://doi.org/10.1002/ejhf.1695
  29. J. Oroz, J. Kim, B. J. Chang, and M. Zweckstetter, Nat. Struct. Mol. Biol. 24, 407 (2017) https://doi.org/10.1038/nsmb.3380
  30. X. Jiang, C. S. Smith, H. M. Petrassi, P. Hammarstrom, J. T. White, J. C. Sacchettini, and J. W. Kelly, Biochemistry 40, 11442 (2001) https://doi.org/10.1021/bi011194d
  31. L. C. De Palmieri, L. M. T. R. Lima, J. B. B. Freire, L. Bleicher, I. Polikarpov, F. C. L. Almeida, and D. Foguel, J. Biol. Chem. 285, 31731 (2010) https://doi.org/10.1074/jbc.M110.157206
  32. J. Kim, J. Oroz, and M. Zweckstetter, Angew. Chemie - Int. Ed. 55, 16168 (2016) https://doi.org/10.1002/anie.201608516
  33. K. H. Lim, A. K. R. Dasari, I. Hung, Z. Gan, J. W. Kelly, P. E. Wright, and D. E. Wemmer, Biochemistry 55, 5272 (2016) https://doi.org/10.1021/acs.biochem.6b00649
  34. X. Sun, H. J. Dyson, and P. E. Wright, Proc. Natl. Acad. Sci. U. S. A. 115, E6201 (2018) https://doi.org/10.1073/pnas.1807024115