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Abstract

The latest measure of the relative evolutionary age of
protein structurefamilies was applied (based on
taxonomic diversity) using the protein structural
interactome map (PSIMAP). It confirms that, in
general, protein domains, which are hubs in this
interaction network, are older than protein domains
with fewer interaction partners. We apply a hypoth-
esis of ‘biological network evolution’ to explain the
positive correlation between interaction and age. It
agrees to the previous suggestions that proteins have
acquired an increasing number of interaction partners
over time via the stepwise addition of new inter-
actions. This hypothesis is shown to be consistent
with the scale-free interaction network topologies
proposed by other groups. Closely co-evolved struc-
tural interaction and the dynamics of network evo-
lution are used to explain the highly conserved core
of protein interaction pathways, which exist across all
divisions of life.

Keywords: Network Evolution, Structurefamily Evolution,
Protein Interaction, Protein Structural Interactome,
PSIMAP, interactomics.

Introduction

There are around 300 distinct classification schemes used
to relate over 140,000 species and sub-species in the
NCBI Taxonomy database {(Wheeler et al., 2000) (July
2002). This ‘tree of life’ classifies species into four
superkingdoms, namely: eukaryota, eubacteria, archaea
and viruses. The huge diversity of life is the result of billions
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of years of evolution on Earth. However, the basic core of
protein mediated metabolic pathways in all these species is
relatively homogeneous (Benner et al., 1989; Morowitz,
1992; Morowitz, 1999). Furthermore, despite the continuing
growth in the quantity of determined protein structures,
sequences and even whole genomes, the rate of finding
novel protein topologies is decreasing (Fig. 1). It is
probable that there are no more than 2,000 distinct protein
topologies in nature (Chathia, 1992; Orengo et al., 1994;
Alexandrov et al., 1995; Wang, 1996; Zhang, 1997). One
can ask how such an ancient and diverse evolutionary
history could maintain such a homogenous biochemical
backbone, supported by so few protein topologies. What
constraints prevent life from using unique biochemical
pathways and discovering new protein folds? The
proposed scale free topology of the interaction network
(Jeong et al., 2000), the structural interaction network (Park
et al, 2001), the closely co-evolved nature of protein
interactions (Bennett et al., 1994; Marcotie et al., 1999;
Fraser et al., 2002) and the rate of network evolution
(Kauffman et al., 1993) contribute significantly to an
account of these observations. We have proposed that
protein interaction networks are conserved in evolution and
highly interacting groups are relatively old and functionally
important {(Park and Bolser, 2001). Here, we explain it
further with the latest data by using the old concept of
biological Network Evolution applied to protein structural
interactome.

Currently the structural classification of proteins
database (SCOP) (Murzin et al., 1995) defines around
1,000 distinct protein fold types as Superfamilies (termed
as structurefamilies in this paper), denoting homology
between their representative protein structural domains
(domain) members. A fold in SCOP is defined solely on the
basis of structural similarity between domains.
Structurefamilies therefore divide folds into evolutionary
groups, using sequence and functional similarities.
However, around 90% of the folds defined in SCOP are
thought to have a single evolutionary origin, constituting a
single superfamily. Structurefamiiies (superfamilies) are the
most useful domain classification for comparing structures
and functions in bioinformatics by virtue of their structural
and phylogenetic classification.

Although the rate at which new protein structures are
deposited in the Protein Data Bank (PDB) (Berman et al.,
2000) is increasing (Fig. 1c), the rate of discovering new
structurefamilies is decreasing (Fig. 1b). The recent
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Fig. 1. (A) The number of new folds added to the PDB (Berman et al., 2000) since 1980. The trend shows a general decrease, with a
slight recent upturn. New folds are assessed by the combinatorial extension (CE) algorithm (Shindyalov & Bourne, 1998). (B) The number
of SCOP folds, superfamilies and families per domain (Murzin et al., 1995) in the PDB. The trend shows increasing domain redundancy
within the groups. (C) The total number of new structures deposited in the PDB per year. Both the trends in A and B oppose the

increasing number of structures deposited in the PDB each year.

conservative structurefamily assignment of 56 genomes
covered between 40-67% of the total detected genes in
eukaryotes and eubacteria (~ 100,000 genes) and
between 31-54% of the total detected genes in
archaebacteria (~ 10,000 genes) (Gough et al., 2001).
Given that a significant portion of the unassigned genes
may represent trans-membrane and other proteins, not
assigned to structures due to experimental difficulty in
structure determination, it is reasonable to suggest that
there are now enough soluble protein structurefamily data
in the PDB to make a global map of structurally observed
structurefamily interactions. PSI-MAP (Protein Structural
interactome MAP) (Park et al., 2001) is the first such map
(Fig. 2). It also compared for the first time the protein
experimental interaction information such as yeast two
hybrid system (Uetz et al., 2000) with structural interaction
information.

The criteria for assigning interactions in PSI-MAP is
strictly structural and exhaustive; distinct pairs of domains
in the PDB are denoted as interacting if they share 5 or
more residue - residue contacts within 6 angstroms or less
(5-5 rule of protein structure interaction). These criteria
were chosen as being the most discriminative within a
range of other criteria (Fig. 3). Different contact algorithms
yield qualitatively similar results (Park et al., 2001). By
using the SCOP domain definition (version 1.59 unless
otherwise stated) it is possible that these criteria will denote
covalently linked domains as interacting. These
interactions (intra-interaction) are in the minority,
accounting for 30% of the (11281) domain-domain
interactions observed. For a breakdown of the 651
observed structurefamily-structurefamily interactions see

Table 1. The number of structurefamilies displaying
interaction through both covalently and non-covalently
linked domains (73 interacting structurefamilies
representing 3,337 interacting domains) indicates that
observed domain fusion events in the PDB are extensive.
The validity of assigning the only intra-interacting
structurefamily pairs as interacting is two fold. Firstly,
domain proximity is a result of the selective pressure to
associate genes that physically interact (Marcotte et al.,
1999; Dandekar et al., 1998; Doolittie 1999; Enright et al.,
1999). Secondly, domain proximity is more generally
indicative of indirect functional associations between
domains (Marcotte et al., 1999; Overbeek et al., 1999;
Enright & Ouzounis, 2001). Domain fusion has been
successfully used to predict protein interaction from
sequence information alone (see Huynen et al., 2000) and
as a hypothesis for the evolution of homo (Bennett et a/.,
1994) and hetero (Marcotte et al., 1999) dimers (see Table
1 for PSIMAP multimer information). In addition, it has
been observed that intra-domain interfaces have strong
similarities to inter-domain interfaces within muiti-domain
proteins (Miller, 1989; Tsai et al., 1996; Jones et al., 2000).

Using the expert SCOP domain and superfamily
definitions to predict superfamily-superfamily interactions
from observed domain fusion events overcomes some of
the technical problems associated with the identification of
homology and fusion encountered using other
computational methods to predict interaction (Overbeek et
al., 1999; Enright & Ouzounis, 2001). PSI-MAP therefore
represents a robust and reliable method of computationally
predicting protein interaction.

It has been argued that the PDB is a fair representation
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Fig. 2. (Right; one of the big sub-networks in PSI-MAP shown as visualised by the layout drawing program INTERVIEWER (Ju, et al,
2003). Protein structurefamilies directly interacting with the NAD(P)-binding Rossmann-fold superfamily (c.2.1) shown in blue are
highlighted in yellow. Left; two contrasting structurefamilies in PSI-MAP are represented. The red circle on the left has nine interaction
partners, for example the Protein kinase-like (d.144.1) superfamily. The red circle on the right has only one interaction partner (a pairwise

interaction), like many structurefamilies in PSI-MAP.
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Fig. 3. Shows the different number of structurefamily -
structurefamily interactions (Y-axis) observed at different mean
residue centre distance thresholds (Z-axis) and different number
of residue - residue contact count thresholds for defining two
domains as interacting (X-axis). Requiring 5 residue - residue
contacts or more at 6 angstroms or less gives a good cut-off for
structurefamily - structurefamily interactions (highlighted above).
Different criteria give qualitatively similar results.
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Fig. 4. Graph of the number interacting structurefamily domains
versus the number of structurefamily interactions for each
structurefamily produced using. The observed correlation is weak
(0.36), and is reduced by the removal of outliers.
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Table 1. Number of hetero and homo multimer interactions in
PSIMAP broken down into inter chain, intra chain and
structurefamilies showing both inter and intra chain interactions
in the PDB.

HOMO HETERO

MULTIMER MULTIMER TOTAL
INTRA 26 4) 147 23) 173( 27)
INTER 287 (44) 118 (18) 405 ( 62)
BOTH 44( 7) 29( 4) 73( 11)
TOTAL 357 (55) 204 (45) 651 (100)

Values in parentheses give percent of the total number of structurefamily
interactions. The large proportion of inter chain homo multimer contacts in
the PBD could be the result of unrecognised crystal contact structures. In
future the Protein Quaternary Structure (PQS) server (Henrick & Thomton,
1998) will be used to construct PSIMAP to alleviate this problem

of all the soluble protein structurefamilies which may exist.
However, given the combinatorial effect, it is unlikely that
the PDB covers a representative set of pair-wise
structurefamily interactions. Importantly, extending the
repertoire of predicted structurefamily-structurefamily
interactions by using structurally annotated genomic
sequence data does not alter the distribution of observed
interactions (Park et al., 2001; Apic et al., 2001a; Apic et
al., 2001b). Thus it is likely that the relative distribution of
interactions in PSIMAP (which forms the basis of our
results and discussion) will reflect the distribution of a
hypothetical ‘compiete’ map.

Another criticism which has been levelled at PSI-MAP is
that the variance in the number interactions assigned to a
structurefamily could be biased by the number domains in
the PDB assigned to that structurefamily. Fig. 4 shows that
only a weak correlation exists between the number of
domain interactions for a structurefamily and the number of
unique structurefamily interactions it has. This correlation
coefficient falls to 0.16 upon removal of the four most
prominent outliers. A similar correlation is measured
between the number of structurefamily interactions and the
absolute number of domains for that structurefamily (data
not shown).

It has been suggested that artificial structures in the
PDB my affect the overall distribution of structurefamily
interactions discussed here. PSI-MAP is constructed using
only structurefamilies from SCOP class 1 to 4. In all, there
are only 12 multi-domain synthetic proteins in these
classes.

Results and Discussion
High and low interaction structurefamilies
PSI-MAP was used fo identify all the structurally observed
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Fig. 5. A log-log plot of the number of structurefamily interactions
against the frequency of structurefamilies with this number of
interactions. The linear fit to a log-log plot indicates a power law
frequency distribution, which is broken by the ‘one interaction
partner’ class of tructurefamilies. Traces of the familiar dove tale
distribution can be seen from left to right, caused by an increased
variance associated with lower frequency events. The upper left
hand side, however, is usually quite linear, suggesting that the
lower than expected number of ‘one interaction partner’
structurefamilies may be significant. Linear regression of the log-
log transformed data gives a correlation coefficient of 0.9.

interactions at the structurefamily level. Structurefamilies
have various degrees of ‘interactability , and the interaction
frequency distribution obeys a power law (Fig. 5).
To assess the functional and evolutionary differences
between the most interactive and the least interactive folds,
we use the latest HINFOLD and LOINFOLD comparison
sets (Park and Bolser, 2001): high interaction
structurefamilies (HIINFOLD, see supplement Table A) and
low interaction structurefamilies (LOINFOLD, see
supplement Table B). The sixteert HINFOLD struc-
turefamilies (with at least seven other interacting partners)
have functions related to glycolysis; oxidative
phosphorylation; catabolism and nucleotide syntheses, well
as DNA binding, replication and metabolic regulatory
processes. The group contains functionally important
domains, often and found in core biochemical pathways
(Park et al., 2001; Apic et al., 2001a; Apic et al., 2001b). By
contrast the 160 LOINFOLD structurefamilies (each with
only one structurefamily interaction) contains only 91 (57%)
structurefamilies with at least one assigned enzyme
classification (see methods section for details of the
functional assignment), covering a total of ~130 distinct
enzyme reactions.

The latest functional analysis of HIINFOLD and
LOINFOLD supports the previous observation that the
absolute number of protein-protein interactions correlates



Biological Network Evolution Hypothesis Applied to Protein Structural Interactome 11

40
2
E 3.6
T o 3.0 +
a o
e
50
85 20 - 25
ES 2.1
22 1.7
8)_ 10 -
g .
<
0.0 [
1 2 3 4

Taxonomic Diversity

Fig. 6. The average number of structurefamily interaction partners
is plotted for structurefamilies in different ‘taxonomic diversity’
groups. The taxonomic diversity of a structurefamily is simply the
number of superkingdoms in which that structurefamily has been
identified.

with the lethality of knock out mutation (Jeong et al., 2001).
Thus PSI-MAP reflects the functional importance of
structurefamilies by showing number of interactions they
have.

Protein phylogeny, age and interaction

The occurrence of specific structurefamilies within different
branches of the tree of life gives us information on
structurefamily evolution and spread. By inference, this
information also gives us the relative age of those
structurefamilies (Ponting et al., 1999; Anantharaman et al.,
2001; and Snel et al., 2002 for recent examples of this
general approach, also suggested by authors, Park and
Bolser, 2001). We used the NCBI taxonomic database and
the Swissprot (Bairoch A. & Apweiler R., 2000) taxonomic
annotation to collect this information (see methods). Simply
counting the occurrence of a structurefamily at the highest
level of the taxonomic tree (the superkingdom) allowed us
to infer an evolutionary age (Table 2). This measure of
‘taxonomic diversity’ gives each structurefamily an
approximate relative rank age.

In general, structurefamilies with low taxonomic diversity
are less likely to have interactions than those found
throughout the tree of life. In combination with this
observation, the average number of structurefamily
interaction partners also increases with diversity (Fig. 6).

As the super-kingdom level is very high, it is necessary
to verify this trend at higher resolution in the future work.

Similar age-interaction correlations have been reported
for metabolic networks (Jeong et al., 2000; Wagner & Fell,

Table 2. Shows the number of structurefamilies allocated to
each ‘taxonomic diversity’ group. The number of struc-
turefamilies in each group with at least one observed
interaction is also given, along with the percentage of
interacting structurefamilies for the group.

Super- Number of Number with Percent
kingdoms structurefamilies interactions (%)
1 363 163 45
2 207 117 57
3 300 221 74
4 57 53 93

2001). Jeong et al. analyse the metabolic networks of 43
organisms, representing eubacteria, eukaryota and
archaea. In this analysis 4% of all substrates are found to
be present in all 43 organisms. These ubiquitous
metabolites also represent the most highly connected
substrates in the individual metabolic networks. Similarly,
the ‘less connected substrates - serve as educts or
products of species-specific enzymatic activities” (Jeong et
al., 2000). Wagner and Fell concentrate on the analysis of
the metabolic network of Escherichia coli. They ranked
metabolites according to local and global network
connectivity. The authors state that ‘many of the most
highly connected metabolites --- have a proposed early
evolutionary origin” (Wagner & Fell, 2001).

Network evolution hypothesis

Recently, it was discovered that many ‘non-centralised
networks, including protein interaction networks, have a
statistically similar connection topology (Barabasi & Albert,
1999). In these networks low and intermediate numbers of
connections are common, while highly connected nodes in
the network are rare but statistically significant
(Dorogovtsev & Mendes, 2001). Typically, the connection
distribution is described by a power law and the network is
said to be ‘scale free’ (Barabasi & Albert, 1999). Such
networks also have the ‘'small world property, whereby
the network diameter is significantly smaller than a random
network with the same number of nodes (Watts & Strogatz,
1998). Scale free networks are optimized for the small
world property, as randomly removing nodes has a very
small effect on the network diameter (Albert et al., 2000).
Such networks are said to be robust, as they can tolerate
random deletions without changing overall connectivity
(Albert et al., 2000). The structural interaction network
produced by PSI-MAP has such a scale free topology (Fig.
5) (Park et al., 2001).

Using models of genetic ‘network evolution’ it has been
shown that as the allosteric interactions between alleles
increases, the rate of finding fitter "genotypes’
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decreases(Kauffman, 1993). In these models ‘inter-
actions’ limit the ability of a network to evolve. This rate of
network evolution suggests why early, functionaily
important and interconnected life processes are slow to
change at evolutionary time scales. Core metabolic
pathways can display permutations (for example loss of
specific pathways (Huynen et al., 1999)), however, the
overall network does not change radically. Ancient,
fundamental biochemical pathways such as the TCA cycle
and glycolysis are fixed in their basic architecture early in
evolution.

The conclusion that the rate of network evolution
combined with the scale free network topology can account
for the structurefamily age-interaction correlation is
somewhat at odds with Wagner, 2001. Here gene
duplication events are identified in the yeast genome, and
they are used to measure of the rate of interaction
formation and loss between paralogous genes. A high rate
of ‘interaction flux is estimated, suggesting 50% of all the
network interactions change every 300 million years. This
estimate is based on the assumption that the rate of
interaction flux after gene duplication is indicative of the
overall rate. However, there is evidence to suggest that this
rate could be specifically accelerated after duplication
(Long & Langley, 1993; Benton et al., 1997; Cirera &
Aguade, 1998; Tsaur et al., 1998), leading to an
overestimate of total interaction flux.

The results and conclusions in this paper corroborate
the results of Fraser et al., 2002. Here, exactly the same
principals of network evolution are used to explain an
observed negative correlation between connectivity and
evolutionary rate. The principals are interpreted in the
biological context of reciprocal mutations and the
coevolution of proteins in the interaction network.

Network topology

Afthough the scale free topology is said to be robust to the
effects of random deletion, conversely, the non random
removal of the most highly connected nodes in the network
rapidly fragments the network (Albert et al., 2000). Why
then do such vulnerable network topologies exist in
nature? Two models of network growth have been used to
account for the prevalence of scale free networks. The first,
called preferential attachment (Barabasi & Albert, 1999),
models an attachment bias towards already connected
nodes. The second model assumes a constrained network
diameter (Puniyani & Lukose, 2001) and the random
attachment of nodes. The diameter of the metabolic
networks from a total of 43 prokaryotes, eukaryotes and
archae are all very similar (around 4), despite the varying
number of metabolites and complexity of these organisms
(Jeong et al., 2000). This observation is not predicted by

preferential attachment, but is implicit in the second model.
It implies that the metabolic network diameter is a limiting
factor in evolution. The same constraint has been
suggested of protein interaction networks (Jeong et al.,
2001). Both models of network growth result in the scale
free topology, where old nodes accumulate more links over
time (without the specific treatment of age as in
Dorogovtsev & Mendes, 2000).

Protein topology

The secondary structure of the HIINFOLD group was
mostly alpha and beta (81%, alpha&beta and alpha+beta)
with only one all-alpha structurefamily (ARM repeat
a.118.1) and two all-beta superfamilies (Immunoglobulin
b.1.1 and Trypsin-like serine proteases b.47.1). The 160
LOINFOLD structurefamilies show a more even distribution
among the classes (Fig. 7).

Methods
Taxonomic diversity

Superkingdoms were assigned to SCOP domains via the
species identification codes of SWISS-PROT Protein
Sequence Database (Bairoch & Apweiler, 2000; Release
39.0, May 2000). Each SCOP domain sequence in
PDB90D (non-redundant SCOP domain sequences at
90% mutual sequence identity) was searched against a
non redundant SWISS-PROT (90% mutual sequence
identity) database. The search was done using the PDB-
ISL protacol (Park et al., 1997; Teichmann et al., 2000) for
reliable structural assignments, implemented to integrate
with a relational database for easy analysis. Briefly, the
PSI-BLAST search algorithm (Altschul et al., 1997) is used
with e-value 0.0005 and up to 10 iterations. These values
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Fig. 7. Percentage of the different structural classes in the 16
most highly interacting structurefamilies and the 160 least
interacting structurefamilies. Constructed using the SCOP
structural classification database.
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have been previously verified and are known to give less
than 1% false positives (Park et al., 1998). Each statistically
significant match (e-value below 0.0005) is checked for
overlap with matches from other PDB90D domain
sequence with different structurefamily classifications, and
these ‘classification collisions’ are removed. Further
filtering reduces the error rate even further (Park et af.,
1997; Teichmann et al., 2000). The resulting structural
assignments between representative SCOP domains and
proteins in SWISS-PROT give the structurefamily -
superkingdom correspondence. These data were used to
reliably derive the taxonomic diversity for each
structurefamily(Fig. 6).

Functional assignment

Using the same method as above each superkingdom was
assigned to a list of SWISS-PROT accession numbers.
These numbers give links to entries in the enzyme
database via the ENZYME number. A very low e-value
threshold was used to select the most reliable enzyme
classifications for each structurefamily.

Summary

The latest functional analysis of high and low interaction
groups showed most highly interacting structurefamilies in
PSI-MAP represent functionally important enzymatic
protein domains with homologues in an average of 3.6
superkingdoms. The least interacting structurefamilies in
represent fewer enzymatic protein domains, occurring in an
average of 2 superkingdoms.

In all, the correlation between the relative age and the
interactability of protein structurefamilies is consistent with
a hypothesis of network growth that proceeds via random

‘add-on’ interactions with constraints (after Puniyani &
Lukose, 2001). New, specialised functions are attached to
the existing network of protein interactions, and
structurefamilies gradually acquire an increasing number of
interaction partners throughout the course of evolution.

We attribute the extremely conserved nature of core
biochemical pathways to a mechanism of ‘network
evolution” where relatively ancient components are under
strong optimization constraints through multiple interactions
(Kauffman, 1993). Thus, in general, protein struc-
turefamilies in central positions in the structural interaction
network are more ancient than peripheral structurefamilies.
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Appendix A. HIINFOLD: The sixteen most Interactive superfamilies.

SCOP D

Number of Interacting Taxonomic

159 Name Superfamilies Diversity Super-kingdoms Distribution
c.371 P-loop containing nucleotide triphosphate hydrolases 25 4 ABEV
b.1.1 Immunoglobulin 23 4 ABEV
c1.8 (Trans) glycosidases 16 4 ABEV
¢.3.1 FAD/NAD(P)-binding domain 11 3 ABE
b.47.1 Trypsin-like serine proteases 9 4 ABEV
cl4 FMN-linked oxidoreductases 9 3 ABE
c.2.1 NAD(P)-binding Rossmann-fold domains 9 4 ABEV
d.142.1 Glutathione synthetase ATP-binding domain-like 9 3 ABE
d.3.1 Cysteine proteinases 8 4 ABEV
d.15.1 Ubiquitin-like 8 2 EV
d.144.1 Protein kinase-like (PK-like) 8 4 ABEV
a.118.1 ARM repeat 7 3 BEV
c.23.16 Class | glutamine amidotransferase-like 7 3 ABE
¢.56.5 Zn-dependent exopeptidases 7 3 ABE
d.58.1 4Fe-4S ferredoxins 7 3 ABE
d.92.1 Metalloproteases (zincins), catalytic domain 7 4 ABEV

AVG TOTAL
34 80483
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Appendix B. LOINFOLD: The 160 least Interactive superfamilies

SCOP ID Taxonomic Super-
1.59 Name Diversity kingdoms

a27 A class Il aminoacyl-tRNA synthetase N-domain 3 ABE
a2 Epsilon subunit of F1F0-ATP synthase C-terminal domain 2 BE
a2.11 Fe, Mn superoxide dismutase (SOD), N-terminal domain 3 ABE
ad42 Methylated DNA-protein cysteine methyliransferase, C-terminal domain 3 ABE
a4.6 C-terminal, effector domain of the bipartite response regulators 2 BE
a4 RNA polymerase subunit RPB10 2 AE
ab3 N-terminal domain of phosphatidylinositol transfer protein seci4p 1 E
a6.1 Putative DNA-binding domain 3 ABE
a7.3 Succinate dehydrogenase/fumarate reductase C-terminal domain 3 ABE
a8.1 Bacterial immunoglobulin/albumin-binding domains 1 B
ail2 Second domain of FERM 1 E
a.15.1 TAF(I1)230 TBP-binding fragment 1 E
a232 Diol dehydratase, gamma subunit 1 B
a.23.3 Methane monooxygenase hydrolase, gamma subunit 1 B
a24.11 Bacterial GAP domain 1 B
a.24.13 Domain of the SRP/SRP receptor G-proteins 3 ABE
a.29.5 alpha-ketoacid dehydrogenase kinase, N-terminal domain 1 E
a4 Domain of poly(ADP-ribose) polymerase 1 E
a44.1 Disulphide-bond formation facilitator (DSBA), insertion domain 1 B
a45.1 Glutathione S-transferases, C-terminal domain 2 BE
a47.1 STAT 1 E
a.48.2 Transferrin receptor ectodomain, C-terminal domain 1 E
as51.1 Cytochrome ¢ oxidase subunit h 1 E
as7 5 to 3 exonuclease, C-terminal subdomain 4 ABEV
a.6.8 HRDC-like 2 AE
ab.1 Enzyme | of the PEP:sugar phosphotransferase system HPr-binding (sub)domain 1 B
a.69.1 C-terminal domain of aipha and beta subunits of F1 ATP synthase 3 ABE
a.85.1 Hemocyanin, N-terminal domain 1 E
a.86.1 Di-copper centre-containing domain 2 BE
a.g7.1 DBL homology domain 1 E
a.88.1 LigA subunit of an aromatic-ring-opening dioxygenase LigAB 1 B
a.96.1 DNA-glycosylase 3 ABE
a.98.1 R1 subunit of ribonucleotide reductase, N-terminal domain 3 BEV
a.99.1 FAD-binding (C-terminal) domain of DNA photolyase 4 ABEV
a123 Chondroitin AC/alginate lyase 2 BV
a.114.1 Interferon-induced guanylate-binding protein 1 (GBP1), C-terminal domain 1 E
a.116.1 GTPase activation domain, GAP 1 E
a11741 Ras GEF 1 E
a.118.2 Ankyrin repeat 4 ABEV
a.1185 Bacterial muramidases 1 B
a.118.6 Protein prenylyltransferase 2 AE
a118.7 14-3-3 protein 1 E
a.119.1 Lipoxigenase 2 BE
a.124.1 Phospholipase C/P1 nuclease 3 ABE
a.137.2 Quinoprotein alcohol dehydrogenase 1 B
a.137.3 Transducin (heterotrimeric G protein), gamma chain 1 E
a.1374 Fe-only hydrogenase smaller subunit 2 BE
a137.7 Proteinase A inhibitor IA3 0 NULL
a.137.8 Epsilon subunit of mitochondrial F1FQ-ATP synthase 1 E
b.15 Transglutaminase, two C-terminal domains 1 E
b.1.1 Clathrin adaptor appendage domain 1 E
b.1.12 Purple acid phosphatase, N-terminal domain 1 E
b.2.1 Diphtheria toxin, C-terminal domain 1 \
b.3.1 Starch-binding domain 3 ABE
b.3.2 Carboxypeptidase D, a regulatory domain 1 E
b.3.3 VHL 1 E
b.5.1 alpha-Amylase inhibitor tendamistat 1 B
b.14.1 Calpain large subunit, middie domain (domain 1il) 1 E
b.24.1 Hyaluronate lyase-like, C-terminal domain 1 B
b.3.1 beta-Galactosidase, domain 5 2 BE
b.34 Lactobacillus maltose phosphorylase, N-terminal domain 2 AB

continued
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SCOPID Taxonomic Super-
1.59 Name Diversity kingdoms

b.34.5 Translation proteins SH3-like domain 3 ABE
b.34.8 Fumarylacetoacetate hydrolase, FAH, N-terminal domain 2 BE
b.4.3 TIMP-like 1 E
b.42.1 Cytokine 2 EV
b.43.2 L-fucose isomerase, C-terminal domain 1 B
b.48.1 mu transposase, C-terminal domain 2 Bv
b.49.2 Alanine racemase-like, C-terminal domain 4 ABEV
b.51.1 ValRS/lleRS editing domain 3 ABE
b.53.1 Ribosomal protein L25-like 3 ABE
b.54.1 Core binding factor beta, CBF 1 E
b.58.1 PK beta-barrel domain-fike 3 ABE
b.61.2 Metalloprotease inhibitor 1 B
b.69.5 RCC1/BLIP-li 2 BE
b.69.7 Prolyl oligopeptidase, N-terminal domain 3 ABE
b.71.1 alpha-Amylases, C-terminal beta-sheet domain 3 ABE
b.74.1 Carbonic anhydrase 3 BEV
b.77.2 delta-Endotoxin (insectocide), middle domain 1 B
b.79.1 Metalloprotease, C-terminal domain 1 B
b.8.3 Cell-division inhibitor MinC, C-terminal domain 1 B
b84 Alpha subunit of glutamate synthase, C-terminal domain 3 ABE
b.85.3 Urease, beta-subunit 3 ABE
b.85.6 Molybdenum cofactor biosynthesis protein MoeA, C-terminal domain 1 B
b.86.1 Hedgehog/intein (Hint) domain 3 ABE
b.93.1 Epsilon subunit of F1F0-ATP synthase N-terminal domain 2 BE
b.98.1 Leukotriene A4 hydrolase N-terminal domain 3 ABE
b.11.1 Ribonuclease domain of colicin E3 1 B
b.13.1 Molybdenum cofactor biosynthesis protein MoeA, N-terminal and linker domains 3 ABE
c.1.6 PLP-binding barrel 4 ABEV
c1.17 Quinolinic acid phosphoribosyltransferase, C-terminal domain 3 ABE
c.8.1 Phosphohistidine domain 3 ABE
c8.2 Aconitase, C-terminal domain 3 ABE
c.8.3 Carbamoyl phosphate synthetase, small subunit N-terminal domain 3 ABE
c.8.4 Transferrin receptor ectodomain, apical domain 2 BE
c.9.1 Barstar (bamase inhibitor) 1 B
ci2 L domain-like 3 BEV
c.13.1 C-terminal domain of phosphatidylinositol transfer protein sec14p 1 E
c.23.6 Cobalamin (vitamin B12)-binding domain ' 3 ABE
c.23.11 Beta-D-glucan exohydrolase, C-terminal domain 3 ABE
c.23.12 Formate/glycerate dehydrogenase catalytic domain-like 4 ABEV
c.26.3 UDP-glucose dehydrogenase (UDPGDH), C-terminal (UDP-binding) domain 3 BEV
c.28.1 N-terminal domain of DNA photolyase 3 ABE
c.32.1 Tubulin, GTPase domain 3 ABE
c¢51 Leucine aminopeptidase, N-terminal domain 1 E
¢.51.1 Anticodon-binding domain of Class Il aaRS 3 ABE
c51.3 Diol dehydratase, beta subunit 1 B
¢.53.1 Resolvase-like 4 ABEV
c.55.2 Creatinase/profidase N-terminal domain 2 BE
c.55.6 DNA repair protein MutS, domain Il 2 AB
c.55.7 Methylated DNA-protein cysteine methyltransferase domain 3 ABE
¢.83.1 Aconitase, first 3 domains 3 ABE
c91.1 PEP carboxykinase-like 3 ABE
c.12.1 Cell-division inhibitor MinC, N-terminal domain 1 B
c.19.1 PEP carboxykinase N-terminal domain 3 ABE
d.15.3 MoaD/ThiS 2 AB
d.15.6 Superantigen toxins, C-terminal domain 1 B
d.15.7 Immunoglobulin-binding domains 1 B
d.15.9 Glutamine synthetase, N-terminal domain 2 AB
di7.1 Cystatin/monellin 1 E
d17.2 Copper amine oxidase, domains 1 and 2 3 ABE
d.2.1 Ubiquitin conjugating enzyme 2 EV
d.26.1 FKBP-like 3 ABE
d.26.2 Colicin E3 immunity protein 1 B

continued
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SCOP ID Taxonomic Super-
159 Name Diversity kingdoms
d.26.3 Chitinase insertion domain 4 ABEV
d41.2 Quinolinic acid phosphoribosyltransferase, N-terminai domain 3 ABE
d41.3 Pyrimidine nucleoside phosphorytase C-terminal domain 2 AB
d415 Molybdopterin synthase subunit MoaE 3 ABE
ds5.1 dsRNA-binding domain-like 4 ABEV
d5.2 Porphobilinogen deaminase (hydroxymethylbilane synthase), C-terminal domain 3 ABE
d.56.1 GroEL-like chaperone, intermediate domain 3 ABE
d.58.12 eEF-1beta-fike 2 AE
d.58.14 Ribosomal protein S6 1 B
d.58.2 NAD-binding domain of HMG-CoA reductase 3 ABE
d.58.22 TRADD, N-terminal domain 1 E
d.58.32 FAD-linked oxidases, C-terminal domain 2 BE
d.6.1 Probable bacterial effector-binding domain 1 B
d.62.1 Pepsin inhibitor-3 1 E
d.67.2 Arginyl-tRNA synthetase (ArgRS), N-terminal ‘additional domain 3 ABE
d.68.1 Translation initiation factor IF3, C-terminal domain 2 BE
d.69.1 C-terminal domain of TolA 1 B
d.79.2 Tubulin, C-terminal domain 3 ABE
d.g2.1 Copper amine oxidase, domain N 1 B
d.94.1 HPr-like 1 B
d.15.1 Clathrin adaptor appendage domain 1 E
d.125.1 Omithine decarboxylase C-terminal domain 1 B
d.138.1 B3/B4 domain of PheRS, PheT 2 BE
d.139.1 Aminoimidazole ribonucleotide synthetase (PurM) C-terminal domain 3 ABE
d142.2 DNA ligase/mRNA capping enzyme, catalytic domain 3 BEV
d.146.1 Uridine diphospho-N-Acetylenolpyruvylglucosamine reductase, MurB, C-terminal domain 1 B
d.149.1 Nitrile hydratase alpha chain 1 B
d.151.1 DNase |-like 3 ABE
d.161.1 ADC synthase 3 ABE
d.165.1 Ribosome inactivating proteins (RIP) 3 BEV
d.168.1 Succinate dehydrogenase/fumarate reductase catalytic domain 3 ABE
d.172.1 gp120 core 1 s
d.176.1 Sulfite oxidase, middle catalytic domain 3 ABE
d.178.1 Aromatic aminoacid monoxygenases, catalytic and oligomerization domains 2 BE
d.181.1 insert subdomain of RNA polymerase alpha subunit 3 ABE
d.184.1 Non-globular alpha+beta subunits of globular proteins 2 BE
d.197.1 Protein-L-isoaspartyl O-methyliransferase, C-terminal domain 1 B
AVG TOTAL
2 19211




