• Title/Summary/Keyword: Protein sensor

Search Result 141, Processing Time 0.023 seconds

Aptamer Based SPREETA Sensor for the Detection of Porphyromonas gingivalis G-Protein

  • Suk-Gyun Park;Hyun Ju Lee;Taeksoo Ji;Kyungbaek Kim;Seung-Ho Ohk
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.289-295
    • /
    • 2024
  • We have developed an aptamer that specifically binds to Porphyromonas gingivalis to reduce the cellular damage caused by P. gingivalis infection and applied it as a biosensor. P. gingivalis is one of the major pathogens causing destructive periodontal disease among the periodontal microorganisms constituting complex biofilms. Porphyromonas gingivalis G-protein (PGP) known to play an important role in the transmission of germs was used as a target protein for the screening of aptamer. The aptamer that has binds to the G-protein of P. gingivalis, was screened and developed through the Systemic Evolution of Ligands by Exponential Energy (SELEX) method. Modified-Western blot analysis was performed with the aptamer which consisted of 38 single-stranded DNA to confirm the selectivity. ELONA (enzyme linked oligonucleotide assay) used to confirm that the aptamer was sensitive to PGP even at low concentration of 1 ㎍/ml. For the rapid detection of P. gingivalis, we constructed a surface plasmon resonance biosensor with SPREETA using the PGP aptamer. It was confirmed that PGP could be detected as low concentration as at 0.1 pM, which is the minimum concentration of aptamer sensor within 5 min. Based on these results, we have constructed a SPREETA biosensor based on aptamer that can bind to P. gingivalis G-protein. It can be used as an infection diagnosis system to rapidly diagnose and analyze oral diseases caused by P. gingivalis.

Fabrication of Multicomponent Protein Microarrays with Microfluidic Devices of Poly(dimethylsiloxane)

  • Jeon, Se-Hoon;Kim, Ui-Seong;Jeon, Won-Jin;Shin, Chee-Burm;Hong, Su-Rin;Choi, In-Hee;Lee, Su-Seung;Yi, Jong-Heop
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.192-196
    • /
    • 2009
  • Recently, the multi-screening of target materials has been made possible by the development of the surface plasmon resonance (SPR) imaging method. To adapt this method to biochemical analysis, the multi-patterning technology of protein microarrays is required. Among the different methods of fabricating protein microarrays, the microfluidic platform was selected due to its various advantages over other techniques. Microfluidic devices were designed and fabricated with polydimethylsiloxane (PDMS) by the replica molding method. These devices were designed to operate using only capillary force, without the need for additional flow control equipment. With these devices, multiple protein-patterned sensor surfaces were made, to support the two-dimensional detection of various protein-protein interactions with SPR. The fabrication technique of protein microarrays can be applied not only to SPR imaging, but also to other biochemical analyses.

Development of Protein Chip for Diagnosis of Chlamydophia Pneumoniae (단백질 칩을 이용한 클라미디아 폐렴의 진단)

  • Kim, Woo Jin;Lee, Hui Young;Lee, Seung-Joon;Jung, Se-Hui;Yuk, Jong Seol;Ha, Kwon-Soo;Jung, Ki-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.4
    • /
    • pp.412-418
    • /
    • 2006
  • Background; The diagnosis of chlamydial infection is based on serology. The current gold standard of diagnosis is MIF(microimmunofluorescence), but this modality is subjective and time-consuming. Protein microarray with using a SPR(surface plasmon resonance) sensor has recently been suggested as a method for detecting infection. For developing a protein chip to diagnose chlamydial infection, EBs(elementary bodies) were immobilized on a gold chip and the interaction between an antibody for Chlamydophila pneumoniae and the EBs(elementary bodies) immobilized on the surface of the gold chip was measured by using an SPR sensor. Methods; For the surface antigen, the EBs of Chlamydophila pneumoniae LKK1 were purified. Charged arrays were prepared by using PDDA(polydiallyldimethylammonium chloride) which has a positive charge. After immobilization of the chlamydial EBs on the PDDA surface, the investigation of the surface was done with using atomic force microscopy. After the antibody for C. pneumoniae was applied on chip, we monitored the SPR wavelength-shift to detect any antigen-antibody interaction with using a self-assembled SPR sensor. Results; The chlamydial EBs on the positively charged PDDA were visible on the surface with using atomic force microscopy. The SPR wavelength increased after interaction of antibody for C. pneumoniae with the EBs immobilized on charged gold surface. The wavelength-shift was correlated with the concentration of antigens. Conclusion; The surface immobilization of EBs on the gold surface with the charged arrays was identified and the antigen-antibody interaction on the gold chip was detected via the SPR sensor. Further investigations are needed to apply this technique to the clinical field.

Bacillus cereus에 의한 Phospholipase C (PLC) 생산

  • Seo, Guk-Hwa;Lee, Jong-Il;Bornscheuer, Uwe T.
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.232-234
    • /
    • 2002
  • Bacillus cereus secretes a nonspecific phospholipase C (PLC) that catalyzes the hydrolysis of phospholipids to yield diacylglycerol and a phosphate monoester. This study focuses on the production of PLC by B. cereus and recombinant E. coli with fusion protein gene (plc::gfp). Fermentation processes have been monitored by a 2-dimensional fluorescence sensor.

  • PDF

Determination of $Ca^{2+}$ by Fiber Optic Fluorosensor Based on the Conformational Change of the Protein Calmodulin (Calmodulin 단백질의 형태변화를 이용한 광섬유 형광센서에 의한 $Ca^{2+}$의 정량)

  • Ri, Chang-Seop;Yang, Seung Tae
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.221-227
    • /
    • 1995
  • The fiber optic fluorosensor that shows a specific selectivity for calcium ion is studied. This sensor employs protein Calmodulin(CaM) which forms a fluorescent chelate with $Ca^{2+}$. A dialysis membrane is used to entrap a fluorescein isothiocyanate-labeled CaM solution at the common end of a bifurcated fiber optic bundle. The sensing mechanism of this sensor is based on the shifts in the fluorescence spectrum of metal-calmodulin complexes which FCaM forms a chelate with $Ca^{2+}$. Upon binding with $Ca^{2+}$, CaM undergoes a conformational change which induces a change in the fluorescence of FCaM. This change in fluorescence signal which is measured by photomultiflier tube is related to the concentration of $Ca^{2+}$ for calibration curve. Detection limit for $Ca^{2+}$ and the interference effects by $Mg^{2+}$, $Eu^{3+}$ and $La^{3+}$ for this sensor are studied. Response time and life time for this fluorosensor are also investigated.

  • PDF

Effects of AMP-activated Protein Kinase Activating Compounds and Its Mechanism (AMP-activated protein kinase 활성화 기전과 관련 약물의 효과)

  • Choi, Hyoung Chul
    • Journal of Yeungnam Medical Science
    • /
    • v.29 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • AMP-activated protein kinase (AMPK) is an important cellular fuel sensor. Its activation requires phosphorylation at Thr-172, which resides in the activation loop of the ${\alpha}1$ and ${\alpha}2$ subunits. Several AMPK upstream kinases are capable of phosphorylating AMPK at Thr-172, including LKB1 and CaMKK${\beta}$ ($Ca^{2+}$/calmodulin-dependent protein kinase kinase${\beta}$). AMPK has been implicated in the regulation of physiological signals, such as in the inhibition of cholesterol fatty acid, and protein synthesis, and enhancement of glucose uptake and blood flow. AMPK activation also exhibits several salutary effects on the vascular function and improves vascular abnormalities. AMPK is modulated by numerous hormones and cytokines that regulate the energy balance in the whole body. These hormone and cytokines include leptin, adiponectin, ghrelin, and even thyroid hormones. Moreover, AMPK is activated by several drugs and xenobiotics. Some of these are in being clinically used to treat type 2 diabetes (e.g., metformin and thiazolidinediones), hypertension (e.g., nifedipine and losartan), and impaired blood flow (e.g., aspirin, statins, and cilostazol). I reviewed the precise mechanisms of the AMPK activation pathway and AMPK-modulating drugs.

  • PDF

A Study of Vision Biomembrane Assembly using Photoreactive Protein Adsorbed Polypyrrole Film

  • Lim, Jeong-Ok;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.208-212
    • /
    • 2000
  • A protein based vision biomembrane was fabricated by adsorbing bacteriorhodopsin into electrochemically polymerized polypyrrole film substrate mainly through strong electrostatic interaction. The immobilized bacteriorhodopsin on the polypyrrole film was demonstrated by SEM and SRET. The light signal transducing function from the bacteriorhodopsin which was adsorbed into Polypyrrole film was evaluated by electroretinogram(ERG). A wave form analysis of the electroretinogram indicated that the adsorbed bacteriorhodopsin retained its activity and light signal was obtained from the protein for at least one month.

  • PDF

A Novel Type of Non-coding RNA, nc886, Implicated in Tumor Sensing and Suppression

  • Lee, Yong Sun
    • Genomics & Informatics
    • /
    • v.13 no.2
    • /
    • pp.26-30
    • /
    • 2015
  • nc886 (=vtRNA2-1, pre-miR-886, or CBL3) is a newly identified non-coding RNA (ncRNA) that represses the activity of protein kinase R (PKR). nc886 is transcribed by RNA polymerase III (Pol III) and is intriguingly the first case of a Pol III gene whose expression is silenced by CpG DNA hypermethylation in several types of cancer. PKR is a sensor protein that recognizes evading viruses and induces apoptosis to eliminate infected cells. Like viral infection, nc886 silencing activates PKR and induces apoptosis. Thus, the significance of the nc886:PKR pathway in cancer is to sense and eliminate pre-malignant cells, which is analogous to PKR's role in cellular innate immunity. Beyond this tumor sensing role, nc886 plays a putative tumor suppressor role as supported by experimental evidence. Collectively, nc886 provides a novel example how epigenetic silencing of a ncRNA contributes to tumorigenesis by controlling the activity of its protein ligand.

Mechanisms of amino acid sensing in mTOR signaling pathway

  • Kim, Eun-Jung
    • Nutrition Research and Practice
    • /
    • v.3 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • Amino acids are fundamental nutrients for protein synthesis and cell growth (increase in cell size). Recently, many compelling evidences have shown that the level of amino acids is sensed by extra- or intra-cellular amino acids sensor(s) and regulates protein synthesis/degradation. Mammalian target of rapamycin complex 1 (mTORC1) is placed in a central position in cell growth regulation and dysregulation of mTOR signaling pathway has been implicated in many serious human diseases including cancer, diabetes, and tissue hypertrophy. Although amino acids are the most potent activator of mTORC1, how amino acids activate mTOR signaling pathway is still largely unknown. This is partly because of the diversity of amino acids themselves including structure and metabolism. In this review, current proposed amino acid sensing mechanisms to regulate mTORC1 and the evidences pro/against the proposed models are discussed.