Mechanisms of amino acid sensing in mTOR signaling pathway

  • Kim, Eun-Jung (Department of Food Sciences and Nutrition, Catholic University of Daegu)
  • Published : 2009.03.31

Abstract

Amino acids are fundamental nutrients for protein synthesis and cell growth (increase in cell size). Recently, many compelling evidences have shown that the level of amino acids is sensed by extra- or intra-cellular amino acids sensor(s) and regulates protein synthesis/degradation. Mammalian target of rapamycin complex 1 (mTORC1) is placed in a central position in cell growth regulation and dysregulation of mTOR signaling pathway has been implicated in many serious human diseases including cancer, diabetes, and tissue hypertrophy. Although amino acids are the most potent activator of mTORC1, how amino acids activate mTOR signaling pathway is still largely unknown. This is partly because of the diversity of amino acids themselves including structure and metabolism. In this review, current proposed amino acid sensing mechanisms to regulate mTORC1 and the evidences pro/against the proposed models are discussed.

Keywords

References

  1. Abraham RT & Wiederrecht GJ (1996). Immunopharmacology of rapamycin. Annu Rev Immunol 14:483-510 https://doi.org/10.1146/annurev.immunol.14.1.483
  2. Backer JM (2008). The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 410:1-17 https://doi.org/10.1042/BJ20071427
  3. Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y & Jiang Y (2007). Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318:977-980 https://doi.org/10.1126/science.1147379
  4. Balage M, Sinaud S, Prod'homme M, Dardevet D, Vary TC, Kimball SR, Jefferson LS & Grizard J (2001). Amino acids and insulin are both required to regulate assembly of the eIF4E. eIF4G complex in rat skeletal muscle. Am J Physiol 281:E565-574
  5. Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM & Meijer AJ (1995). Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270:2320-2326 https://doi.org/10.1074/jbc.270.5.2320
  6. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS & Schreiber SL (1994). A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756-758 https://doi.org/10.1038/369756a0
  7. Byfield MP, Murray JT & Backer JM (2005). hVps34 is a nutrientregulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 280:33076-33082 https://doi.org/10.1074/jbc.M507201200
  8. Chiu MI, Katz H & Berlin V (1994). RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci U S A 91:12574-12578 https://doi.org/10.1073/pnas.91.26.12574
  9. Cruz MC, Cavallo LM, Gorlach JM, Cox G, Perfect JR, Cardenas ME & Heitman J (1999). Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol 19:4101-4112 https://doi.org/10.1128/MCB.19.6.4101
  10. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC & Thomas G (2001). Mammalian TOR: a homeostatic ATP sensor. Science 294:1102-1105 https://doi.org/10.1126/science.1063518
  11. Dubouloz F, Deloche O, Wanke V, Cameroni E & De Virgilio C (2005). The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19:15-26 https://doi.org/10.1016/j.molcel.2005.05.020
  12. Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, Sessa WC, Qin J, Zhang P, Su B & Jacinto E (2008). The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27:1932-1943 https://doi.org/10.1038/emboj.2008.120
  13. Fahien LA, MacDonald MJ, Kmiotek EH, Mertz RJ & Fahien CM (1988). Regulation of insulin release by factors that also modify glutamate dehydrogenase. J Biol Chem 263:13610-13614
  14. Findlay GM, Yan L, Procter J, Mieulet V & Lamb RF (2007). A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J 403:13-20 https://doi.org/10.1042/BJ20061881
  15. Fingar DC, Salama S, Tsou C, Harlow E & Blenis J (2002). Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16:1472-1487 https://doi.org/10.1101/gad.995802
  16. Gao M & Kaiser CA (2006). A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat Cell Biol 8:657-667 https://doi.org/10.1038/ncb1419
  17. Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL & Thomas G (2003). Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11:1457-1466 https://doi.org/10.1016/S1097-2765(03)00220-X
  18. Garcia-Martinez JM & Alessi DR (2008). mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serumand glucocorticoid-induced protein kinase 1 (SGK1). Biocheml J 416:375-385 https://doi.org/10.1042/BJ20081668
  19. Garlick PJ & Grant I (1988). Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochem J 254:579-584 https://doi.org/10.1042/bj2540579
  20. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ & Sabatini DM (2006). Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11:859-871 https://doi.org/10.1016/j.devcel.2006.10.007
  21. Guertin DA & Sabatini DM (2007). Defining the role of mTOR in cancer. Cancer cell 12:9-22 https://doi.org/10.1016/j.ccr.2007.05.008
  22. Gulati P, Gaspers LD, Dann SG, Joaquin M, Nobukuni T, Natt F, Kozma SC, Thomas AP & Thomas G (2008). Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 7:456-465 https://doi.org/10.1016/j.cmet.2008.03.002
  23. Hall DJ, Grewal SS, de la Cruz AF & Edgar BA (2007). Rheb-TOR signaling promotes protein synthesis, but not glucose or amino acid import, in Drosophila. BMC Biol 5:10 https://doi.org/10.1186/1741-7007-5-10
  24. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J & Yonezawa K (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177-189 https://doi.org/10.1016/S0092-8674(02)00833-4
  25. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C & Avruch J (1998). Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273:14484-14494 https://doi.org/10.1074/jbc.273.23.14484
  26. Haussinger D (1996). The role of cellular hydration in the regulation of cell function. Biochem J 313:697-710 https://doi.org/10.1042/bj3130697
  27. Hay N & Sonenberg N (2004). Upstream and downstream of mTOR. Genes Dev 18:1926-1945 https://doi.org/10.1101/gad.1212704
  28. Heitman J, Movva NR & Hall MN (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905-909 https://doi.org/10.1126/science.1715094
  29. Hsu YC, Chern JJ, Cai Y, Liu M & Choi KW (2007). Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445:785-788 https://doi.org/10.1038/nature05528
  30. Hyde R, Taylor PM & Hundal HS (2003). Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J 373:1-18 https://doi.org/10.1042/BJ20030405
  31. Iiboshi Y, Papst PJ, Kawasome H, Hosoi H, Abraham RT, Houghton PJ & Terada N (1999). Amino acid-dependent control of p70(s6k). Involvement of tRNA aminoacylation in the regulation. J Biol Chem 274:1092-1099 https://doi.org/10.1074/jbc.274.2.1092
  32. Ikenoue T, Inoki K, Yang Q, Zhou X & Guan KL (2008). Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27:1919-1931 https://doi.org/10.1038/emboj.2008.119
  33. Inoki K, Corradetti MN & Guan KL (2005b). Dysregulation of the TSC-mTOR pathway in human disease. Nat Gene 37:19-24 https://doi.org/10.1038/ng1494
  34. Inoki K, Li Y, Xu T & Guan KL (2003a). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829-1834 https://doi.org/10.1101/gad.1110003
  35. Inoki K, Ouyang H, Li Y & Guan KL (2005a). Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 69:79-100 https://doi.org/10.1128/MMBR.69.1.79-100.2005
  36. Inoki K, Zhu T & Guan KL (2003b). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577-590 https://doi.org/10.1016/S0092-8674(03)00929-2
  37. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A & Hall MN (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122-1128 https://doi.org/10.1038/ncb1183
  38. Juhasz G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM & Neufeld TP (2008). The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol 181:655-666 https://doi.org/10.1083/jcb.200712051
  39. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument- Bromage H, Tempst P & Sabatini DM (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-175 https://doi.org/10.1016/S0092-8674(02)00808-5
  40. Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P & Sabatini DM (2003). GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11:895-904 https://doi.org/10.1016/S1097-2765(03)00114-X
  41. Kim E, Goraksha-Hicks P, Li L, Neufeld TP & Guan KL (2008). Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10:935-945 https://doi.org/10.1038/ncb1753
  42. Kim E & Guan KL (2009). RAG GTPases in nutrient-mediated TOR signaling pathway. Cell Cycle 8:[in publication]
  43. Lee CH, Inoki K & Guan KL (2007). mTOR pathway as a target in tissue hypertrophy. Annu Rev Pharmacol Toxicol 47:443-467 https://doi.org/10.1146/annurev.pharmtox.47.120505.105359
  44. Lindmo K & Stenmark H (2006). Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119:605-614 https://doi.org/10.1242/jcs.02855
  45. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P & Hall MN (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457-468 https://doi.org/10.1016/S1097-2765(02)00636-6
  46. Long W, Saffer L, Wei L & Barrett EJ (2000). Amino acids regulate skeletal muscle PHAS-I and p70 S6-kinase phosphorylation independently of insulin. Am J Physiol 279:E301-306
  47. Long X, Lin Y, Ortiz-Vega S, Yonezawa K & Avruch J (2005a). Rheb binds and regulates the mTOR kinase. Curr Biol 15:702-713 https://doi.org/10.1016/j.cub.2005.02.053
  48. Long X, Ortiz-Vega S, Lin Y & Avruch J (2005b). Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 280:23433-23436 https://doi.org/10.1074/jbc.C500169200
  49. Lynch CJ, Fox HL, Vary TC, Jefferson LS & Kimball SR (2000). Regulation of amino acid-sensitive TOR signaling by leucine analogues in adipocytes. J Cell Biochem 77:234-251 https://doi.org/10.1002/(SICI)1097-4644(20000501)77:2<234::AID-JCB7>3.0.CO;2-I
  50. May ME & Buse MG (1989). Effects of branched-chain amino acids on protein turnover. Diabetes Metabol Rev 5:227-245 https://doi.org/10.1002/dmr.5610050303
  51. McDaniel ML, Marshall CA, Pappan KL & Kwon G (2002). Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells. Diabetes 51:2877-2885 https://doi.org/10.2337/diabetes.51.10.2877
  52. Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C & Robaglia C (2002). Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci U S A 99:6422-6427 https://doi.org/10.1073/pnas.092141899
  53. Miotto G, Venerando R, Khurana KK, Siliprandi N & Mortimore GE (1992). Control of hepatic proteolysis by leucine and isovaleryl-Lcarnitine through a common locus. Evidence for a possible mechanism of recognition at the plasma membrane. J Biol Chem 267:22066-22072
  54. Miotto G, Venerando R, Marin O, Siliprandi N & Mortimore GE (1994). Inhibition of macroautophagy and proteolysis in the isolated rat hepatocyte by a nontransportable derivative of the multiple antigen peptide Leu8-Lys4-Lys2-Lys-beta Ala. J Biol Chem 269:25348-25353
  55. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM & Murphy LO (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521-534 https://doi.org/10.1016/j.cell.2008.11.044
  56. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, Zwartkruis FJ & Thomas G (2005). Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A 102:14238-14243 https://doi.org/10.1073/pnas.0506925102
  57. Nobukuni T, Kozma SC & Thomas G (2007). hvps34, an ancient player, enters a growing game: mTOR Complex1/S6K1 signaling. Curr Opin Cell Biol 19:135-141 https://doi.org/10.1016/j.ceb.2007.02.019
  58. Odorizzi G, Babst M & Emr SD (2000). Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci 25:229-235 https://doi.org/10.1016/S0968-0004(00)01543-7
  59. Oldham S, Montagne J, Radimerski T, Thomas G & Hafen E (2000). Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 14:2689-2694 https://doi.org/10.1101/gad.845700
  60. Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, Miyamoto T, Hara K, Takehana K, Avruch J, Kikkawa U & Yonezawa K (2007). The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 282:20329-20339 https://doi.org/10.1074/jbc.M702636200
  61. Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA & Alessi DR (2007). Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405:513-522 https://doi.org/10.1042/BJ20070540
  62. Redpath NT, Foulstone EJ & Proud CG (1996). Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J 15:2291-2297
  63. Roccio M, Bos JL & Zwartkruis FJ (2006). Regulation of the small GTPase Rheb by amino acids. Oncogene 25:657-664 https://doi.org/10.1038/sj.onc.1209106
  64. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P & Snyder SH (1994). RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78:35-43 https://doi.org/10.1016/0092-8674(94)90570-3
  65. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA & Sabatini DM (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25:903-915 https://doi.org/10.1016/j.molcel.2007.03.003
  66. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L & Sabatini DM (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-1501 https://doi.org/10.1126/science.1157535
  67. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument- Bromage H, Tempst P & Sabatini DM (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296-1302 https://doi.org/10.1016/j.cub.2004.06.054
  68. Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D & Edgar BA (2003). Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5:566-571 https://doi.org/10.1038/ncb996
  69. Schmelzle T & Hall MN (2000). TOR, a central controller of cell growth. Cell 103:253-262 https://doi.org/10.1016/S0092-8674(00)00117-3
  70. Sener A & Malaisse WJ (1980). L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288:187-189 https://doi.org/10.1038/288187a0
  71. Shah OJ, Anthony JC, Kimball SR & Jefferson LS (2000). 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol 279:E715-729
  72. Shintani T & Klionsky DJ (2004). Autophagy in health and disease: a double-edged sword. Science 306:990-995 https://doi.org/10.1126/science.1099993
  73. Smith EM, Finn SG, Tee AR, Browne GJ & Proud CG (2005). The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J Biol Chem 280:18717-18727 https://doi.org/10.1074/jbc.M414499200
  74. Tee AR, Manning BD, Roux PP, Cantley LC & Blenis J (2003). Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259-1268 https://doi.org/10.1016/S0960-9822(03)00506-2
  75. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ & Kim DH (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316-323 https://doi.org/10.1038/ncb1547
  76. Wang L, Harris TE, Roth RA & Lawrence JC Jr (2007). PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 282:20036-20044 https://doi.org/10.1074/jbc.M702376200
  77. Xu G, Kwon G, Cruz WS, Marshall CA & McDaniel ML (2001). Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes 50:353-360 https://doi.org/10.2337/diabetes.50.2.353
  78. Yan Y & Backer JM (2007). Regulation of class III (Vps34) PI3Ks. Biochem Soc Trans 35:239-241 https://doi.org/10.1042/BST0350239
  79. Yan Y, Flinn RJ, Wu H, Schnur RS & Backer JM (2009). hVps15, but not Ca(2+)/CaM, is required for the activity and regulation of hVps34 in mammalian cells. Biochem J 417:747-755 https://doi.org/10.1042/BJ20081865
  80. Yang Q & Guan KL (2007). Expanding mTOR signaling. Cell Res 17:666-681 https://doi.org/10.1038/cr.2007.64
  81. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA & Pan D (2003). Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5:578-581 https://doi.org/10.1038/ncb999