• Title/Summary/Keyword: Protein Mutation

Search Result 564, Processing Time 0.03 seconds

A Case of End-stage non-small cell Lung Cancer Patient with Brain Metastasis Treated with Pembrolizumab with Integrative Medicine Therapy (Pembrolizumab과 통합의학치료로 호전된 뇌전이 동반 말기 비소세포성 폐암 환자 1례)

  • Seo, Han Gil;Jin, Yong Jae;Song, Mi Hwa;Kim, In Tae;Park, Ji Hye;Jung, Jun Suk;Cho, Sung Kyoo;Shin, Kwang Soon
    • Journal of Korean Traditional Oncology
    • /
    • v.23 no.2
    • /
    • pp.11-25
    • /
    • 2018
  • Objective: The purpose of this study is to report the case of a patient with non-small cell lung cancer (NSCLC) with Programmed cell death protein 1 (PD-1) mutation treated by Integrative Medicine Therapy (IMT). Methods: A patient with metastatic NSCLC received pembrolizumab 200mg intravenously for every 3 weeks from July 2017. Repeat cycle every 3 weeks since July 2017. The patient has been treated with Integrative Medicine Therapy (IMT) since December 2016. The tumor size was measured by computed tomography (CT) and magnetic resonance imaging(MRI). Adverse events were evaluated by the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE), version 5.0. Results: After combined treatment, the extent of proximal portion of primary tumor in the left lower lobe was decreased and disease status was stable radiologically. No evidence of newly developed metastatic lesions in the brain since May 2017. The patient did not experience any adverse event according to NCI-CTCAE ver. 5.0. Conclusion: This case study suggests that Integrative Medicine Therapy (IMT) may contribute to tumor response, in conjunction with Pembrolizumab on the treatment of patients with NSCLC.

Akap12beta supports asymmetric heart development via modulating the Kupffer's vesicle formation in zebrafish

  • Kim, Jeong-gyun;Kim, Hyun-Ho;Bae, Sung-Jin
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.526-531
    • /
    • 2019
  • The vertebrate body plan is accomplished by left-right asymmetric organ development and the heart is a representative asymmetric internal organ which jogs to the left-side. Kupffer's vesicle (KV) is a spherical left-right organizer during zebrafish embryogenesis and is derived from a cluster of dorsal forerunner cells (DFCs). Cadherin1 is required for collective migration of a DFC cluster and failure of DFC collective migration by Cadherin1 decrement causes KV malformation which results in defective heart laterality. Recently, loss of function mutation of A-kinase anchoring protein 12 (AKAP12) is reported as a high-risk gene in congenital heart disease patients. In this study, we demonstrated the role of $akap12{\beta}$ in asymmetric heart development. The $akap12{\beta}$, one of the akap12 isoforms, was expressed in DFCs which give rise to KV and $akap12{\beta}$-deficient zebrafish embryos showed defective heart laterality due to the fragmentation of DFC clusters which resulted in KV malformation. DFC-specific loss of $akap12{\beta}$ also led to defective heart laterality as a consequence of the failure of collective migration by cadherin1 reduction. Exogenous $akap12{\beta}$ mRNA not only restored the defective heart laterality but also increased cadherin1 expression in $akap12{\beta}$ morphant zebrafish embryos. Taken together, these findings provide the first experimental evidence that $akap12{\beta}$ regulates heart laterality via cadherin1.

Development of CRISPR technology for precise single-base genome editing: a brief review

  • Lee, Hyomin K.;Oh, Yeounsun;Hong, Juyoung;Lee, Seung Hwan;Hur, Junho K.
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.98-105
    • /
    • 2021
  • The clustered regularly interspaced short palindromic repeats (CRISPR) system is a family of DNA sequences originally discovered as a type of acquired immunity in prokaryotes such as bacteria and archaea. In many CRISPR systems, the functional ribonucleoproteins (RNPs) are composed of CRISPR protein and guide RNAs. They selectively bind and cleave specific target DNAs or RNAs, based on sequences complementary to the guide RNA. The specific targeted cleavage of the nucleic acids by CRISPR has been broadly utilized in genome editing methods. In the process of genome editing of eukaryotic cells, CRISPR-mediated DNA double-strand breaks (DSB) at specific genomic loci activate the endogenous DNA repair systems and induce mutations at the target sites with high efficiencies. Two of the major endogenous DNA repair machineries are non-homologous end joining (NHEJ) and homology-directed repair (HDR). In case of DSB, the two repair pathways operate in competition, resulting in several possible outcomes including deletions, insertions, and substitutions. Due to the inherent stochasticity of DSB-based genome editing methods, it was difficult to achieve defined single-base changes without unanticipated random mutation patterns. In order to overcome the heterogeneity in DSB-mediated genome editing, novel methods have been developed to incorporate precise single-base level changes without inducing DSB. The approaches utilized catalytically compromised CRISPR in conjunction with base-modifying enzymes and DNA polymerases, to accomplish highly efficient and precise genome editing of single and multiple bases. In this review, we introduce some of the advances in single-base level CRISPR genome editing methods and their applications.

SCFFBS1 Regulates Root Quiescent Center Cell Division via Protein Degradation of APC/CCCS52A2

  • Geem, Kyoung Rok;Kim, Hyemin;Ryu, Hojin
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.695-701
    • /
    • 2022
  • Homeostatic regulation of meristematic stem cells accomplished by maintaining a balance between stem cell self-renewal and differentiation is critical for proper plant growth and development. The quiescent center (QC) regulates root apical meristem homeostasis by maintaining stem cell fate during plant root development. Cell cycle checkpoints, such as anaphase promoting complex/cyclosome/cell cycle switch 52 A2 (APC/CCCS52A2), strictly control the low proliferation rate of QC cells. Although APC/CCCS52A2 plays a critical role in maintaining QC cell division, the molecular mechanism that regulates its activity remains largely unknown. Here, we identified SCFFBS1, a ubiquitin E3 ligase, as a key regulator of QC cell division through the direct proteolysis of CCS52A2. FBS1 activity is positively associated with QC cell division and CCS52A2 proteolysis. FBS1 overexpression or ccs52a2-1 knockout consistently resulted in abnormal root development, characterized by root growth inhibition and low mitotic activity in the meristematic zone. Loss-of-function mutation of FBS1, on the other hand, resulted in low QC cell division, extremely low WOX5 expression, and rapid root growth. The 26S proteasome-mediated degradation of CCS52A2 was facilitated by its direct interaction with FBS1. The FBS1 genetically interacted with APC/CCCS52A2-ERF115-PSKR1 signaling module for QC division. Thus, our findings establish SCFFBS1-mediated CCS52A2 proteolysis as the molecular mechanism for controlling QC cell division in plants.

Applicability of Fomes fomentariusfor the formation of a mycelial mat (균사체 매트 제작을 위한 말굽버섯의 응용 가능성)

  • Kim, Hyun-Suk;Oh, Deuk-Sil;Jung, Young-Hyun;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.163-167
    • /
    • 2022
  • Bio-based alternative leathers may be produced from biomass fiber, protein polymers, bacterial cellulose, and mushroom mycelia. Of these components, mushroom mycelia are of greatest interest. In this study, the potential of Fomes fomentariusas a mushroom mycelial mat was confirmed, and the optimal strain for the development of the mycelial mat was determined. Moreover, the quality of the mycelial mat was improved by identifying an efficient culture method to increase productivity. Mutant strains whose independence was verified were obtained by treatment with gamma irradiation under various conditions. Biofilm formation by the resulting strains was examined in sawdust and liquid media and the characteristics of the biofilms were analyzed. The biofilm of the mutant strains showed results that were similar to or better than the biofilms of longevity and cypress mushrooms. These findings are expected to be utilized in future research aimed at discovering new biomaterials using mushroom mycelia.

Discovery of LDD-1075 as a potent FLT3 inhibitor

  • Kyoung Bin Yoon;Hyo Jeong Lee;Hye Jin Chung;Jungeun Lee;Jungil Choi;Jeong Doo Heo;Yong‑Chul Kim;Sun‑Young Han
    • Oncology Letters
    • /
    • v.17 no.5
    • /
    • pp.4735-4741
    • /
    • 2019
  • Fms-like tyrosine kinase 3 (FLT3) is a valuable pharmacological target in the treatment of acute myeloid leukemia (AML). LDD-1075 and LDD-1076 are indirubin derivatives, and LDD-1075 is the ester form of LDD-1076. LDD-1076 exhibited a potent in vitro FLT3 kinase activity inhibition with an IC50 of 7.89 nM, whereas, LDD-1075 demonstrated a relatively weak activity against FLT3 (IC50 of 3.19 µM). In contrast with the results of the FLT3 kinase activity inhibition assay, the LDD-1076 did not affect the growth of the MV4-11 cell line, which harbors the constitutively activated form of the FLT3 mutation. Notably, LDD-1075 exhibited a strong cytotoxic effect against the MV4-11 cells. When LDD-1075 was incubated with the MV4-11 cell lysate, the formation of LDD-1076 was observed. Treatment with LDD-1075 inhibited the FLT3 phosphorylation along with the phosphorylation of the signal transducer and activator of transcription 5 protein, which is a downstream signal transducer of FLT3. Treatment with LDD-1075 induced apoptosis and cell cycle arrest at the G1 phase. The present study demonstrated that the LDD-1076 formed by the bioconversion of LDD-1075 is a potent FLT3 inhibitor with anti-leukemic activity.

Comparison of Resistance Acquisition and Mechanisms in Erwinia amylovora against Agrochemicals Used for Fire Blight Control

  • Hyeonheui Ham;Ga-Ram Oh;Yong Hwan Lee;Yong Hoon Lee
    • The Plant Pathology Journal
    • /
    • v.40 no.5
    • /
    • pp.525-536
    • /
    • 2024
  • Agrochemicals containing antibiotics are authorized to manage fire blight that has been occurring in Korea since 2015. The minimum inhibitory concentration (MIC) of each antibiotic against Erwinia amylovora, the causal pathogen of fire blight, has increased over the years due to the pathogen's frequent exposure to antibiotics, indicating the necessity to prepare for the emergence of antibiotic resistance. In this study, E. amylovora was exposed to stepwise increasing concentrations of eight different agrochemicals, each containing single or mixed antibiotics, and gene mutation and changes in MIC were assessed. Streptomycin and oxolinic acid induced an amino acid substitution in RpsL and GyrA, respectively, resulting in a rapid increase in MIC. Oxytetracycline initially induced amino acid substitutions or frameshifts in AcrR, followed by substitutions of 30S small ribosomal protein subunit S10 or AcrB, further increasing MIC. E. amylovora acquired resistance in the order of oxolinic acid, streptomycin, and oxytetracycline at varying exposure frequencies. Resistance acquisition was slower against agrochemicals containing mixed antibiotics than those with single antibiotics. However, gene mutations conferring antibiotic resistance emerged sequentially to both antibiotics in the mixed formulations. Results suggested that frequent application of mixed antibiotics could lead to the emergence of multidrug-resistant E. amylovora isolates. This study provided essential insights into preventing the emergence of antibiotic-resistant E. amylovora and understanding the underlying mechanisms of resistance acquisition.

Chromosomal Localization and Mutation Detection of the Porcine APM1 Gene Encoding Adiponectin (Adiponectin을 암호화하는 돼지 APM1 유전자의 염색체상 위치파악과 돌연변이 탐색)

  • Park, E.W.;Kim, J.H.;Seo, B.Y.;Jung, K.C.;Yu, S.L.;Cho, I.C.;Lee, J.G.;Oh, S.J.;Jeon, J.T.;Lee, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.537-546
    • /
    • 2004
  • Adiponectin is adipocyte complement-related protein which is highly specialized to play important roles in metabolic and honnonal processes. This protein, called GBP-28, AdipoQ, and Acrp30, is encoded by the adipose most abundant gene transcript 1 (APM1) which locates on human chromosome 3q27 and mouse chromosome 16. In order to determine chromosomal localization of the porcine APM1, we carried out PCR analysis using somatic cell hybrid panel as well as porcine whole genome radiation hybrid (RH) panel. The result showed that the porcine APM1 located on chromosome 13q41 or 13q46-49. These locations were further investigated with the two point analysis of RH panel, revealed the most significant linked marker (LOD score 20.29) being SIAT1 (8 cRs away), where the fat-related QTL located. From the SSCP analysis of APM1 using 8 pig breeds, two distinct SSCP types were detected from K~ native and Korean wild pigs. The determined sequences in Korean native and Korean wild pigs showed that two nucleotide positions (T672C and C705G) were substituted. The primary sequence of the porcine APM1 has 79 to 87% identity with those of human, mouse, and bovine APM1. The domain structures of the porcine APM1 such as signal sequence, hypervariable region, collagenous region. and globular domain are also similar to those of mammalian genes.

Relationship Between MC1R and ASIP Genotypes and Basic Coat Colors in Jeju Horses (제주마의 기본모색과 MC1R과 ASIP 유전자형 조합의 상관관계)

  • Kim, Nam-Young;Han, Sang-Hyun;Lee, Sung-Soo;Lee, Chong-Eon;Park, Nam-Geon;Ko, Moon-Suck;Yang, Young-Hoon
    • Journal of Animal Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.107-111
    • /
    • 2011
  • This study was undertaken to reveal the relationship between genetic variations and the basic coat color classification system in Jeju horses. Genetic variations of the melanocortinreceptor 1 (MC1R) and agouti signaling protein (ASIP) genes were investigated using pyrosequencing technique. A nucleotide substitution mutation for MC1R g.901C>T and an ASIP 11-bp deletion mutation were screened. Black horses had MC1R $E^+$/- ($E^+/E^+$ or $E^+/E^e$) and ASIP $A^a/A^a$ genotypes. In contrast, chestnut horse genotypes were MC1R $E^e/E^e$ and ASIP -/-. Thus, black and bay horses have at least one dominant MC1R allele, $E^+$, whereas chestnut horses have homozygous recessive alleles $E^e/E^e$. This suggests that the MC1R genotypes determine chestnut or black/bay coat color, regardless of the genotype distribution of ASIP. In addition, the horses with MC1R $E^+$/- and a dominant ASIP $A^A$/- allele showed bay coat color, but not black, suggesting that the ASIP $A^A$ allele represses black coat color development in the hairs of the body, but not in the mane and all four legs. Pedigree analysis showed a consistent relationship between the genotype distribution of the MC1R and ASIP genes and basic coat color patterns, even in the $F_1$ progeny. The results of this study revealed the relationship between the coat color phenotype and genetic background and suggested that useful information may be provided for molecular breeding of Jeju horses.

Biogenesis of Lysosome-related Organelle Mutant Silkworms by Direct Injection of a Cas9 Protein-guided RNA Complex into Bombyx mori Embryos (Cas9 단백질/ 가이드 RNA 복합체를 이용한 누에 BmBLOS 유전자 편집)

  • Kim, Kee Young;Yu, Jeong Hee;Kim, Su-Bae;Kim, Seong-Wan;Kim, Seong-Ryul;Choi, Kwang-Ho;Kim, Jong Gil;Park, Jong Woo
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.537-544
    • /
    • 2019
  • Genome editing technology employing gene scissors has generated interest in molecular breeding in various fields, and the development of the third-generation gene scissors of the clustered, regularly interspaced short palindromic repeat (CRISPR) system has accelerated the field of molecular breeding through genome editing. In this study, we analyzed the possibility of silkworm molecular breeding using gene scissors by genomic and phenotypic analysis after editing the biogenesis of lysosome-related organelles (BmBLOS) gene of Bakokjam using the CRISPR/Cas9 system. Three types of guide RNAs (gRNA) were synthesized based on the BmBLOS gene sequence of Bakokjam. Complexes of the prepared gRNA and Cas9 protein were formed and introduced into Bombyx mori BM-N cells by electroporation. Analysis of the gene editing efficiency by T7 endonuclease I analysis revealed that the B4N gRNA showed the best efficiency. The silkworm genome was edited by microinjecting the Cas9/B4N gRNA complex into silkworm early embryos and raising the silkworms after hatching. The hatching rate was as low as 18%, but the incidence of mutation was over 40%. In addition, phenotypic changes were observed in about 70% of the G0 generation silkworms. Sequence analysis showed that the BmBLOS gene appeared to be a heterozygote carrying the wild-type and mutation in most individuals, and the genotype of the BmBLOS gene was also different in all individuals. These results suggest that although the possibility of silkworm molecular breeding using the CRISPR/Cas9 system would be very high, continued research on breeding and screening methods will be necessary to improve gene editing efficiency and to obtain homozygotes.