Acknowledgement
This study was carried out with the support of Cooperative Research Programs (Project no. RS-2020-RD009337) from the Rural Development Administration, Republic of Korea.
References
- Anes, J., McCusker, M. P., Fanning, S. and Martins, M. 2015. The ins and outs of RND efflux pumps in Escherichia coli. Front. Microbiol. 6:587.
- Beabout, K., Hammerstrom, T. G., Perez, A. M., Magalhaes, B. F., Prater, A. G., Clements, T. P., Arias, C. A., Saxer, G. and Shamoo, Y. 2015. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility. Antimicrob. Agents Chemother. 59:5561-5566.
- Brodersen, D. E., Clemons, W. M. Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T. and Ramakrishnan, V. 2000. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103:1143-1154.
- Chiou, C.-S. and Jones, A. L. 1995. Molecular analysis of high-level streptomycin resistance in Erwinia amylovora. Phytopathology 85:324-328.
- Deng, W., Li, C. and Xie, J. 2013. The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Cell. Signal. 25:1608-1613.
- Entenza, J. M., Giddey, M., Vouillamoz, J. and Moreillon, P. 2010. In vitro prevention of the emergence of daptomycin resistance in Staphylococcus aureus and enterococci following combination with amoxicillin/clavulanic acid or ampicillin. Int. J. Antimicrob. Agents 35:451-456.
- Escursell, M. M., Roschi, A., Smits, T. H. M. and Rezzonico, F. 2021. Characterization and direct molecular discrimination of rpsL mutations leading to high streptomycin resistance in Erwinia amylovora. J. Plant Pathol. 103:99-108.
- Forster, H., McGhee, G. C., Sundin, G. W. and Adaskaveg, J. E. 2015. Characterization of streptomycin resistance in isolates of Erwinia amylovora in California. Phytopathology 105:1302-1310.
- Grossman, T. H. 2016. Tetracycline antibiotics and resistance. Cold Spring Harb. Perspect. Med. 6:a025387.
- Gu, R., Li, M., Su, C. C., Long, F., Routh, M. D., Yang, F., McDermott, G. and Yu, E. W. 2008. Conformational change of the AcrR regulator reveals a possible mechanism of induction. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64:584-588.
- Ham, H., Oh, G.-R., Lee, B. W., Lee, Y. H. and Lee, Y. H. 2023. Assessment of oxytetracycline and oxolinic acid resistance of Erwinia amylovora isolated from 2019 to 2022 in Korea. Korean J. Pestic. Sci. 27:283-292 (in Korean).
- Ham, H., Oh, G.-R., Lee, B. W., Lee, Y. H. and Lee, Y. H. 2024. Changes of sensitivity to streptomycin in Erwinia amylovora isolated from 2019 to 2023 in Korea. Res. Plant Dis. 30:199-205 (in Korean).
- Ham, H., Oh, G.-R., Park, D. S. and Lee, Y. H. 2022. Survey of oxolinic acid-resistant Erwinia amylovora in Korean apple and pear orchards, and the fitness impact of constructed mutants. Plant Pathol. J. 38:482-489.
- Herbert, A., Hancock, C. N., Cox, B., Schnabel, G., Moreno, D., Cavelho, R., Jones, J., Paret, M., Geng, X. and Wang, H. 2022. Oxytetracycline and streptomycin resistance genes in Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot in peach. Front. Microbiol. 13:821808.
- Hirata, T., Saito, A., Nishino, K., Tamura, N. and Yamaguchi, A. 2004. Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob. Agents Chemother. 48:2179-2184.
- Izghirean, N., Waidacher, C., Kittinger, C., Chyba, M., Koraimann, G., Pertschy, B. and Zarfel, G. 2021. Effects of ribosomal protein S10 flexible loop mutations on tetracycline and tigecycline susceptibility of Escherichia coli. Front. Microbiol. 12:663835.
- Kleitman, F., Shtienberg, D., Blachinsky, D., Oppenheim, D., Zilberstaine, M., Dror, O. and Manulis, S. 2005. Erwinia amylovora populations resistant to oxolinic acid in Israel: prevalence, persistence and fitness. Plant Pathol. 54:108-115.
- Krajewska, J., Tyski, S. and Laudy, A. E. 2023. Mutant prevention concentration, frequency of spontaneous mutant selection, and mutant selection window-a new approach to the in vitro determination of the antimicrobial potency of compounds. Antimicrob. Agents Chemother. 67:e0137322.
- Lee, M. S., Lee, I., Kim, S. K., Oh, C.-S. and Park, D. H. 2018. In vitro screening of antibacterial agents for suppression of fire blight disease in Korea. Res. Plant Dis. 24:41-51 (in Korean).
- Maeda, Y., Kiba, A., Ohnishi, K. and Hikichi, Y. 2004. Implications of amino acid substitutions in GyrA at position 83 in terms of oxolinic acid resistance in field isolates of Burkholderia glumae, a causal agent of bacterial seedling rot and grain rot of rice. Appl. Environ. Microbiol. 70:5613-5620.
- Maeda, Y., Kiba, A., Ohnishi, K. and Hikichi, Y. 2007. Amino acid substitutions in gyrA of Burkholderia glumae are implicated in not only oxolinic acid resistance but also fitness on rice plants. Appl. Environ. Microbiol. 73:1114-1119.
- Manulis, S., Kleitman, F., Dror, O. and Shabi, E. 2000. Isolation of strains of Erwinia amylovora resistant to oxolinic acid. IOBC WPRS Bull. 23:89-92.
- Manulis, S., Kleitman, F., Shtienberg, D., Shwartz, H., Oppenheim, D., Zilberstaine, M. and Shabi, E. 2003. Changes in the sensitivity of Erwinia amylovora populations to streptomycin and oxolinic acid in Israel. Plant Dis. 87:650-654.
- Martin, R. G. and Rosner, J. L. 2001. The AraC transcriptional activators. Curr. Opin. Microbiol. 4:132-137.
- McGhee, G. C. and Sundin, G. W. 2011. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. Phytopathology 101:192-204.
- McManus, P. S. and Jones, A. L. 1994. Epidemiology and genetic analysis of streptomycin-resistant Erwinia amylovora from Michigan and evaluation of oxytetracycline for control. Phytopathology 84: 627-633.
- McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443-465.
- Miller, T. D. and Schroth, M. N. 1972. Monitoring the epiphytic populations of Erwinia amylovora on pear with a selective medium. Phytopathology 62:1175-1182.
- Mortimer, P. G. and Piddock, L. J. 1993. The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli. J. Antimicrob. Chemother. 32:195-213.
- Mouton, J. W., Muller, A. E., Canton, R., Giske, C. G., Kahlmeter, G. and Turnidge, J. 2017. MIC-based dose adjustment: facts and fables. J. Antimicrob. Chemother. 73:564-568.
- Schnabel, E. L. and Jones, A. L. 1999. Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl. Environ. Microbiol. 65:4898-4907.
- Stockwell, V. O. and Duffy, B. 2012. Use of antibiotics in plant agriculture. Rev. Sci. Tech. 31:199-210.
- Sundin, G. W., Peng, J., Brown, L. E., Zeng, Q., Forster, H. and Adaskaveg, J. E. 2023. A novel IncX plasmid mediates high-level oxytetracycline and streptomycin resistance in Erwinia amylovora from commercial pear orchards in California. Phytopathology 113:2165-2173.
- Sundin, G. W. and Wang, N. 2018. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 56:161-180.
- Wang, G., Inaoka, T., Okamoto, S. and Ochi, K. 2009. A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrob. Agents Chemother. 53:1019-1026.
- Wiegand, I., Hilpert, K. and Hancock, R. E. W. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3:163-175.
- Yoshida, H., Bogaki, M., Nakamura, M. and Nakamura, S. 1990. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34:1271-1272.