DOI QR코드

DOI QR Code

SCFFBS1 Regulates Root Quiescent Center Cell Division via Protein Degradation of APC/CCCS52A2

  • Geem, Kyoung Rok (Department of Biology, Chungbuk National University) ;
  • Kim, Hyemin (Department of Biology, Chungbuk National University) ;
  • Ryu, Hojin (Department of Biology, Chungbuk National University)
  • 투고 : 2022.04.29
  • 심사 : 2022.07.06
  • 발행 : 2022.10.31

초록

Homeostatic regulation of meristematic stem cells accomplished by maintaining a balance between stem cell self-renewal and differentiation is critical for proper plant growth and development. The quiescent center (QC) regulates root apical meristem homeostasis by maintaining stem cell fate during plant root development. Cell cycle checkpoints, such as anaphase promoting complex/cyclosome/cell cycle switch 52 A2 (APC/CCCS52A2), strictly control the low proliferation rate of QC cells. Although APC/CCCS52A2 plays a critical role in maintaining QC cell division, the molecular mechanism that regulates its activity remains largely unknown. Here, we identified SCFFBS1, a ubiquitin E3 ligase, as a key regulator of QC cell division through the direct proteolysis of CCS52A2. FBS1 activity is positively associated with QC cell division and CCS52A2 proteolysis. FBS1 overexpression or ccs52a2-1 knockout consistently resulted in abnormal root development, characterized by root growth inhibition and low mitotic activity in the meristematic zone. Loss-of-function mutation of FBS1, on the other hand, resulted in low QC cell division, extremely low WOX5 expression, and rapid root growth. The 26S proteasome-mediated degradation of CCS52A2 was facilitated by its direct interaction with FBS1. The FBS1 genetically interacted with APC/CCCS52A2-ERF115-PSKR1 signaling module for QC division. Thus, our findings establish SCFFBS1-mediated CCS52A2 proteolysis as the molecular mechanism for controlling QC cell division in plants.

키워드

과제정보

This work was supported by the National Research Foundation (NRF-2021R1I1A3050947).

참고문헌

  1. Aichinger, E., Kornet, N., Friedrich, T., and Laux, T. (2012). Plant stem cell niches. Annu. Rev. Plant Biol. 63, 615-636. https://doi.org/10.1146/annurev-arplant-042811-105555
  2. Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., and Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39-44. https://doi.org/10.1038/nature03184
  3. Campos, M.L., Yoshida, Y., Major, I.T., de Oliveira Ferreira, D., Weraduwage, S.M., Froehlich, J.E., Johnson, B.F., Kramer, D.M., Jander, G., Sharkey, T.D., et al. (2016). Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat. Commun. 7, 12570. https://doi.org/10.1038/ncomms12570
  4. Chen, M., Chory, J., and Fankhauser, C. (2004). Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87-117. https://doi.org/10.1146/annurev.genet.38.072902.092259
  5. Chen, Q., Sun, J.Q., Zhai, Q.Z., Zhou, W.K., Qi, L.L., Xu, L., Wang, B., Chen, R., Jiang, H.L., Qi, J., et al. (2011). The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonatemediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23, 3335-3352. https://doi.org/10.1105/tpc.111.089870
  6. Cheng, M.C., Liao, P.M., Kuo, W.W., and Lin, T.P. (2013). The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 162, 1566-1582. https://doi.org/10.1104/pp.113.221911
  7. Cruz-Ramirez, A., Diaz-Trivino, S., Wachsman, G., Du, Y., Arteaga-Vazquez, M., Zhang, H., Benjamins, R., Blilou, I., Neef, A.B., Chandler, V., et al. (2013). A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer. PLoS Biol. 11, e1001724. https://doi.org/10.1371/journal.pbio.1001724
  8. Gagne, J.M., Downes, B.P., Shiu, S.H., Durski, A.M., and Vierstra, R.D. (2002). The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 99, 11519-11524. https://doi.org/10.1073/pnas.162339999
  9. Gonzalez-Garcia, M.P., Vilarrasa-Blasi, J., Zhiponova, M., Divol, F., MoraGarcia, S., Russinova, E., and Cano-Delgado, A.I. (2011). Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138, 849-859. https://doi.org/10.1242/dev.057331
  10. Gonzalez, L.E., Keller, K., Chan, K.X., Gessel, M.M., and Thines, B.C. (2017). Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression. BMC Genomics 18, 533. https://doi.org/10.1186/s12864-017-3864-6
  11. Grieneisen, V.A., Xu, J., Maree, A.F.M., Hogeweg, P., and Scheres, B. (2007). Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449, 1008-1013. https://doi.org/10.1038/nature06215
  12. Hartmann, J., Stuhrwohldt, N., Dahlke, R.I., and Sauter, M. (2013). Phytosulfokine control of growth occurs in the epidermis, is likely to be non-cell autonomous and is dependent on brassinosteroids. Plant J. 73, 579-590. https://doi.org/10.1111/tpj.12056
  13. Heyman, J., Cools, T., Vandenbussche, F., Heyndrickx, K.S., Van Leene, J., Vercauteren, I., Vanderauwera, S., Vandepoele, K., De Jaeger, G., Van Der Straeten, D., et al. (2013). ERF115 controls root quiescent center cell division and stem cell replenishment. Science 342, 860-863. https://doi.org/10.1126/science.1240667
  14. Heyman, J., Kumpf, R.P., and De Veylder, L. (2014). A quiescent path to plant longevity. Trends Cell Biol. 24, 443-448. https://doi.org/10.1016/j.tcb.2014.03.004
  15. Hong, J.H., Savina, M., Du, J., Devendran, A., Kannivadi Ramakanth, K., Tian, X., Sim, W.S., Mironova, V.V., and Xu, J. (2017). A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. Cell 170, 102-113.e14. https://doi.org/10.1016/j.cell.2017.06.002
  16. Hou, X., Lee, L.Y., Xia, K., Yan, Y., and Yu, H. (2010). DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 19, 884-894. https://doi.org/10.1016/j.devcel.2010.10.024
  17. Maldonado-Calderon, M.T., Sepulveda-Garcia, E., and Rocha-Sosa, M. (2012). Characterization of novel F-box proteins in plants induced by biotic and abiotic stress. Plant Sci. 185-186, 208-217. https://doi.org/10.1016/j.plantsci.2011.10.013
  18. Nemhauser, J.L., Hong, F., and Chory, J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467-475. https://doi.org/10.1016/j.cell.2006.05.050
  19. Rahni, R., Efroni, I., and Birnbaum, K.D. (2016). A case for distributed control of local stem cell behavior in plants. Dev. Cell 38, 635-642. https://doi.org/10.1016/j.devcel.2016.08.015
  20. Ryu, H., Cho, H., Kim, K., and Hwang, I. (2010). Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling. Mol. Cells 29, 283-290. https://doi.org/10.1007/s10059-010-0035-x
  21. Ryu, H., Kim, K., Cho, H., Park, J., Choe, S., and Hwang, I. (2007). Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19, 2749-2762. https://doi.org/10.1105/tpc.107.053728
  22. Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P., et al. (1999). An auxindependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463-472. https://doi.org/10.1016/S0092-8674(00)81535-4
  23. Scheres, B. (2007). Stem-cell niches: nursery rhymes across kingdoms. Nat. Rev. Mol. Cell Biol. 8, 345-354. https://doi.org/10.1038/nrm2164
  24. Scheres, B., Benfey, P., and Dolan, L. (2002). Root development. Arabidopsis Book 1, e0101. https://doi.org/10.1199/tab.0101
  25. Timilsina, R., Kim, J.H., Nam, H.G., and Woo, H.R. (2019). Temporal changes in cell division rate and genotoxic stress tolerance in quiescent center cells of Arabidopsis primary root apical meristem. Sci. Rep. 9, 3599. https://doi.org/10.1038/s41598-019-40383-2
  26. Vanstraelen, M., Baloban, M., Da Ines, O., Cultrone, A., Lammens, T., Boudolf, V., Brown, S.C., De Veylder, L., Mergaert, P., and Kondorosi, E. (2009). APC/C-CCS52A complexes control meristem maintenance in the Arabidopsis root. Proc. Natl. Acad. Sci. U. S. A. 106, 11806-11811. https://doi.org/10.1073/pnas.0901193106
  27. Willems, A., Heyman, J., Eekhout, T., Achon, I., Pedroza-Garcia, J.A., Zhu, T., Li, L., Vercauteren, I., Van den Daele, H., van de Cotte, B., et al. (2020). The cyclin CYCA3;4 is a postprophase target of the APC/C(CCS52A2) E3-ligase controlling formative cell divisions in Arabidopsis. Plant Cell 32, 2979-2996. https://doi.org/10.1105/tpc.20.00208
  28. Zhang, W.J., Swarup, R., Bennett, M., Schaller, G.E., and Kieber, J.J. (2013). Cytokinin induces cell division in the quiescent center of the Arabidopsis root apical meristem. Curr. Biol. 23, 1979-1989. https://doi.org/10.1016/j.cub.2013.08.008
  29. Zhou, W.K., Lozano-Torres, J.L., Blilou, I., Zhang, X.Y., Zhai, Q.Z., Smant, G., Li, C.Y., and Scheres, B. (2019). A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177, 942-956.e14. https://doi.org/10.1016/j.cell.2019.03.006