• Title/Summary/Keyword: Property (X)

Search Result 1,432, Processing Time 0.029 seconds

MORPHIC PROPERTY OF A QUOTIENT RING OVER POLYNOMIAL RING

  • Long, Kai;Wang, Qichuan;Feng, Lianggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1433-1439
    • /
    • 2013
  • A ring R is called left morphic if $$R/Ra{\simeq_-}l(a)$$ for every $a{\in}R$. Equivalently, for every $a{\in}R$ there exists $b{\in}R$ such that $Ra=l(b)$ and $l(a)=Rb$. A ring R is called left quasi-morphic if there exist $b$ and $c$ in R such that $Ra=l(b)$ and $l(a)=Rc$ for every $a{\in}R$. A result of T.-K. Lee and Y. Zhou says that R is unit regular if and only if $$R[x]/(x^2){\simeq_-}R{\propto}R$$ is morphic. Motivated by this result, we investigate the morphic property of the ring $$S_n=^{def}R[x_1,x_2,{\cdots},x_n]/(\{x_ix_j\})$$, where $i,j{\in}\{1,2,{\cdots},n\}$. The morphic elements of $S_n$ are completely determined when R is strongly regular.

SOME PROPERTIES OF STRONG CHAIN TRANSITIVE MAPS

  • Barzanouni, Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.951-965
    • /
    • 2019
  • Let $f:X{\rightarrow}X$ be a continuous map on a compact metric space (X, d) and for an arbitrary $x{\in}X$, $${\mathcal{SC}}_d(x,f):=\{y{\mid}x{\text{ can be strong }}d-{\text{chain to }}y\}$$. We give an example to show that ${\mathcal{SC}}_d(x,f)$ is dependent on the metric d on X but it is a closed and f-invariant set. We prove that if ${\mathcal{SC}}_d(x,f){\supseteq}{\Omega}(f)$ or f has the asymptotic-average shadowing property, then ${\mathcal{SC}}_d(x,f)=X$. Also, we show that if f has the shadowing property, then ${\lim}\;{\sup}_{n{\in}{\mathbb{N}}}\{f^n\}={\mathcal{SC}}_d(f)$ where ${\mathcal{SC}}_d(f)=\{(x,y){\mid}y{\in}{\mathcal{SC}}_d(x,f)\}$. For each $n{\in}{\mathbb{N}}$, we give an example in which ${\mathcal{SCR}}_d(f^n){\neq}{\mathcal{SCR}}_d(f)$. In spite of it, we prove that if $f^{-1}:(X,d){\rightarrow}(X,d)$ is an equicontinuous map, then ${\mathcal{SCR}}_d(f^n)={\mathcal{SCR}}_d(f)$ for all $n{\in}{\mathbb{N}}$.

Hewitt Realcompactification and Basically Disconnected Cover

  • 김창일
    • Journal for History of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.161-168
    • /
    • 2002
  • We show that if the Stone-Cech compactification of $\textit{AX}$ and the minimal basically disconnected cove. of $\beta$Χ we homeomorphic and every real $\sigma$$Z(X)^#$-ultrafilter on X has the countable intersection property, then there is a covering map from $\nu$(ΛΧ) to $\nu$Χ and every real $\sigma$$Z(X)^#$-ultrafilter on Χ has the countable intersection property if and only if there is a homeomorphism from the Hewitt realcompactification of ΛΧ to the minimal basically disconnected space of $\nu$Χ.

  • PDF

ASSOUAD DIMENSION: ANTIFRACTAL METRIZATION, POROUS SETS, AND HOMOGENEOUS MEASURES

  • Luukkainen, Jouni
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.23-76
    • /
    • 1998
  • We prove that a non-empty separable metrizable space X admits a totally bounded metric for which the metric dimension of X in Assouad's sense equals the topological dimension of X, which leads to a characterization for the latter. We also give a characterization based on this Assouad dimension for the demension (embedding dimension) of a compact set in a Euclidean space. We discuss Assouad dimension and these results in connection with porous sets and measures with the doubling property. The elementary properties of Assouad dimension are proved in an appendix.

  • PDF

THE PSEUDO ORBIT TRACING PROPERTY AND EXPANSIVENESS ON UNIFORM SPACES

  • Lee, Kyung Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.255-267
    • /
    • 2022
  • Uniform space is a generalization of metric space. The main purpose of this paper is to extend several results contained in [5, 6] which have for an expansive homeomorphism with the pseudo orbit tracing property(POTP in short) on a compact metric space (X, d) for an expansive homeomorphism with the POTP on a compact uniform space (X, 𝒰). we characterize stable and unstable sets, sink and source and saddle, recurrent points for an expansive homeomorphism which has the POTP on a compact uniform space (X, 𝒰).

REMARKS ON A GOLDBACH PROPERTY

  • Jang, Sun Ju
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.403-407
    • /
    • 2011
  • In this paper, we study Noetherian Boolean rings. We show that if R is a Noetherian Boolean ring, then R is finite and $R{\simeq}(\mathbb{Z}_2)^n$ for some integer $n{\geq}1$. If R is a Noetherian ring, then R/J is a Noetherian Boolean ring, where J is the intersection of all ideals I of R with |R/I| = 2. Thus R/J is finite, and hence the set of ideals I of R with |R/I| = 2 is finite. We also give a short proof of Hayes's result : For every polynomial $f(x){\in}\mathbb{Z}[x]$ of degree $n{\geq}1$, there are irreducible polynomials $g(x)$ and $h(x)$, each of degree $n$, such that $g(x)+h(x)=f(x)$.

INJECTIVE PROPERTY OF LAURENT POWER SERIES MODULE

  • Park, Sang-Won
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.367-374
    • /
    • 2001
  • Northcott and McKerrow proved that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-1}]$ is an injective left R[x]-module. Park generalized Northcott and McKerrow's result so that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-S}]$ is an injective left $R[x^S]$-module, where S is a submonoid of $\mathbb{N}$($\mathbb{N}$ is the set of all natural numbers). In this paper we extend the injective property to the Laurent power series module so that if R is a ring and E is an injective left R-module, then $E[[x^{-1},x]]$ is an injective left $R[x^S]$-module.

  • PDF

Microstructure and Wear Behaviour of Rapidly Solidified Al-20Si-5Fe-zPb(x=2, 4, 6wt.%) Alloys (급속응고 Al-20Si-5Fe-xPb(x=2, 4, 6 wt.%) 합금의 미세조직과 마모거동)

  • 김택수
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.96-102
    • /
    • 1999
  • The effect of Pb addition on microstructure and wear resistance was studied in rapidly solidified Al-20Si-5Fe-xPb(x=2, 4, 6 wt.%) alloys. The R/S Al-20Si-5Fe-xPb (x=2, 4, 6 wt.%) alloys showed a fine and homogeneous microstructure and an improved wear property compared with Al-20Si-5Fe alloy, while no significant change in UTS (Ultimate Tensile Strength) was shown. Contribution of the dispersoids on the wear property was discussed by showing the plastic deformation layers formed during wear track.

  • PDF