Hewitt Realcompactification and Basically Disconnected Cover*

단국대학교 수학교육과 김창일

Abstract

We show that if the Stone-Čech compactification of ΛX and the minimal basically disconnected cover of βX are homeomorphic and every real $\sigma Z(X)^{\#}$ -ultrafilter on X has the countable intersection property, then there is a covering map from $v(\Lambda X)$ to vX and every real $\sigma Z(X)^{\#}$ -ultrafilter on X has the countable intersection property if and only if there is a homeomorphism from the Hewitt realcompactification of ΛX to the minimal basically disconnected space of vX.

0. Introduction

All spaces in this paper are assume to be Tychonoff and for a space X, let $(\beta X, \beta_X)$ $((vX, v_X), \text{ resp.})$ denotes the Stone-Čech compactification (Hewitt realcompactification, resp.) of X. For any regular space X, there is the absolute (EX, k_X) of X and if X is Tychonoff, then there is a homeomorphism $k: \beta(EX) \to E(\beta X)$. Moreover, for any space X, the following are equivalent:

- (i) there is a homeomorphism $v(EX) \rightarrow E(vX)$,
- (ii) if $\{A_n: n \in N\}$ is a decreasing sequence in R(X) and $\bigcap \{A_n: n \in N\} = \phi$, then $\bigcap \{ \operatorname{cl}_{vX}(A_n): n \in N\} = \phi$,
- (iii) if $\{A_n: n \in N\}$ is a decreasing sequence in R(X), then $\operatorname{cl}_{\nu X}(\bigcap \{A_n: n \in N\})$ = $\bigcap \{\operatorname{cl}_{\nu X}(A_n): n \in N\}$, and

^{*} The present research was conducted by the research fund of Dankook University in 2001.

(iv) every stable R(X)-ultrafilter has the countable intersection prorerty [4].

For any Tychonoff space X, there is a minimal basically disconnected cover $(\Lambda X, \Lambda_X)$ [5] and if X is locally weakly Lindelöf, then ΛX are given by a filter space [2] and [4]. In this paper, we show that if the Stone-Čech compactification of ΛX and the minimal basically disconnected cover of βX are homeomorphic, then ΛX is a filter space and that if every real $\sigma Z(X)^{\#}$ -ultrafilter on X has the countable intersection property, then there is a covering map from $v(\Lambda X)$ to vX. Using this, we will show that if the Stone-Čech compactification of ΛX and the minimal basically disconnected cover of βX are homeomorphic, then every real $\sigma Z(X)^{\#}$ -ultrafilter on X has the countable intersection property if and only if there is a homeomorphism from the Hewitt realcompactification of ΛX to the minimal basically disconnected space of vX. For the terminology, we refer to [1] and [4].

1. Fixed $\sigma Z(X)^{\#}$ -ultrafilter space

Recall that a subspace Y of a space X is said to be C^* —embedded in X if for any bounded real-valued continuous map $f: Y \to R$, there is a bounded real-valued continuous map $g: X \to R$ with $g \mid_{Y} = f$ and that a space X is called basically disconnected if every cozero-set in X is C^* —embedded in X.

Definition 1.1. Let X be a space. Then a pair (Y, f) is called

- (1) a cover of X if $f: Y \to X$ is a covering map,
- (2) a basically disconnected cover of X if (Y, f) is a cover of X and Y is a basically disconnected space and,
- (3) a minimal basically disconnected cover of X if (Y, f) is a cover of X and it is a basically disconnected cover of X and for any basically disconnected cover (Z, g) of X, there is a covering map $h: Z \to Y$ with $f \circ h = g$

For any space X, the collection R(X) of all regular closed sets in X, when partially ordered by inclusion, becomes a complete Boolean algebra, in which the join, meet, and complementation operations are defined as follows:

If
$$A \in R(X)$$
 and $\{A_i : i \in I\} \subseteq R(X)$, then
$$\bigvee \{A_i : i \in I\} = \operatorname{cl}_X (\bigcup \{A_i : i \in I\}),$$

$$\bigwedge \{A_i : i \in I\} = \operatorname{cl}_X (\operatorname{int}_X (\bigcap \{A_i : i \in I\})), \text{ and }$$

$$A' = \operatorname{cl}_X (X - A)$$

and a sublattice of R(X) is a subset of R(X) that contains ϕ , X and is closed under finite joins and meets [4].

A lattice L is called $\sigma-complete$ if every countable subset of L has join and meet. For a subset M of a complete Boolean algebra L, σM denotes the smallest σ -complete Boolean subalgebra of L containing M. For any space X, Z(X) denotes the set of all zero-sets and let $Z(X)^{\#}=\{\operatorname{cl}_X(\operatorname{int}_X(A)): A\in Z(X)\}$. For a space X and a zero-set Z in X, there is a zero-set X in X with X with X and X with X and X with X and X with X and X is a Boolean isomorphism and that for any extension X of a space X, the map X is a Boolean isomorphism. Hence, for any space X, the isomorphism X is a Boolean isomorphism. Hence, for any space X, the isomorphism X is a Boolean induces Boolean isomorphisms X and X and X is a Boolean induces Boolean isomorphisms X and X is a Boolean isomorphism.

For any space X, $(\Lambda X, \Lambda_X)$ $((\Lambda(\beta X), \Lambda_\beta)$, resp.) denotes the minimal basically disconnected cover of $X(\beta X, \text{resp.})$. Vermeer showed that for a compact space X, ΛX is given by the Stone-space $S(\sigma Z(X)^*)$ of $\sigma Z(X)^*$ and $\Lambda_X(\alpha) = \bigcap \alpha$ [5].

Recall that a space X is called *weakly Lindel* of if every open cover of X has a countable subfamily that is dense in X and that a space X is called *locally weakly Lindel* of if every element of X has a weakly Lindel of neighborhood. In [2] and [4], it is shown that for any locally weakly Lindel of space X, X is given by the filter space $\{a: a \text{ is } a \text{ fixed } \sigma Z(X)^* - \text{ultrafilter}\}$ and $\Lambda_X(a) = \bigcap a$.

For a space X, there is the Stone extension $\Lambda^{\beta}: \beta(\Lambda X) \to \beta X$ of $\beta_X \circ \Lambda_X$. Since $\beta(\Lambda X)$ and βX are compact, Λ^{β} is a covering map and since $\beta(\Lambda X)$ is basically disconnected [5], there is a covering map $h_X: \beta(\Lambda X) \to \Lambda(\beta X)$ $\Lambda^{\beta} = \Lambda_{\beta} \circ h_X$. If h_X is a homeomorphism, then we write $\beta(\Lambda X) = \Lambda(\beta X)$ and in case, we will identify $(\beta(\Lambda X), \Lambda^{\beta})$ and $(\Lambda(\beta X), \Lambda_{\beta})$. In [2], it is shown that if X is a weakly Lindelöf space, then $\beta(\Lambda X) = \Lambda(\beta X)$.

Proposition 1.2. Suppose that X is a space and $\beta(\Lambda X) = \Lambda(\beta X)$. Then ΛX is given by the filter space $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#} - \text{ultrafilter }\}$.

Proof. Since the diagram

$$\begin{array}{c|c}
\Lambda_{\beta}^{-1}(X) & \xrightarrow{\Lambda_{\beta_X}} & X \\
\downarrow & & \downarrow & \downarrow \\
\beta(\Lambda X) & \xrightarrow{\Lambda_{\beta}} & \beta X
\end{array}$$

is a pullback in the category **Top**, there is a continuous map h_X : $\Lambda X \to \Lambda_{\beta}^{-1}(X)$ such that $\Lambda_{\beta_X} \circ h_X = \Lambda_X$ and $j \circ h_X = h_X \circ \beta_{\Lambda X}$, where j is the inclusion map and Λ_{β_X} is the restriction and corestriction of Λ_{β} with respect to $\Lambda_{\beta}^{-1}(X)$ and X, respectively. Take any $x \in \Lambda_{\beta}^{-1}(X)$. Then there is $y \in \beta(\Lambda X)$ with $h_X(y) = x$ and $\Lambda_{\beta}(x) = \Lambda_{\beta_X}(x) \in X$. Since Λ_X is a covering maps, $y \in \Lambda X$. Hence h_X is onto. Since $\Lambda_{\beta_X} \circ h_X = \Lambda_X$ and Λ_X is perfect, h_X is a perfect map [4]. Since h_X is 1 - 1, h_X is a homeomorphism. Hence $(\Lambda_{\beta}^{-1}(X), \Lambda_{\beta_X})$ is the minimal basically disconnected cover of X. Thus $\Lambda_{\beta}^{-1}(X)$ is the fixed $\sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ is } \alpha \text{ fixed } \sigma Z(X)^{\#}$ -ultrafilter $\{\alpha : \alpha \text{ fixed } \sigma Z(X)^{\#}\}$

Propostion 1.3. Let X be a space. Suppose that ΛX is given by the fixed $\sigma Z(X)^{\#}$ -ultrafilter space. Then for any decreasing sequence $(A_n)_n$ in $\sigma Z(X)^{\#}$, $\Lambda_X(\cap \{A_n^*: n\in N\}) = \bigcap \{A_n: n\in N\}$, where $A_n^* = \{\alpha: \alpha \text{ is } a \text{ fixed } \sigma Z(X)^{\#}$ - ultrafilter and $A_n \in \alpha$.

Proof. Take any $A \in \sigma Z(X)^*$ and $\alpha \in A_n^*$. Then $\Lambda_X(A^*) \subseteq A$.

Take any $x \in A$. Let $\alpha_x = \{B \in \sigma Z(X)^{\#} : x \in \operatorname{int}_X(B)\}$. Then $\alpha_x \cup \{A\}$ has the finite meet property and hence there is a $\sigma Z(X)^{\#}$ -ultrafilter α containing $\alpha_x \cup \{A\}$.

Since α_x is a local base at x in X, $\Lambda_X(\alpha) = \bigcap \alpha = x$ and so $A \subseteq \Lambda_X(A)$. Thus $\Lambda_X(\bigcap \{A_n^* : n \in N\}) \subseteq \bigcap \{A_n : n \in N\}$. Take any $y \in \bigcap \{A_n : n \in N\}$, then $\alpha_y \cup \{A_n : n \in N\}$ has the finite meet property and hence it is contained in a $\sigma Z(X)^*$ -ultrafilter η and so $\eta \in \bigcap \{A_n^* : n \in N\}$ and $\Lambda_X(\eta) = y$.

2. Hewitt realcompactification and minimal basically disconnected cover

In the following, we may assume that every space has the property $\Lambda(\beta X) = \beta(\Lambda X)$. For any space X, let $v: \Lambda X \to v(\Lambda X)$ be the Hewitt realcompactification of ΛX and the minimal basically disconnected cover of vX. $(\Lambda(vX),\Lambda_v)$ $r_X: v(\Lambda X) \to vX$ a continuous map is realcompact, there $v_X \circ \Lambda_X = r_X \circ v_A$ [4]. If there is a homeomorphism $k: v(\Lambda X) \to \Lambda(vX)$ such that $\Lambda_v \cdot k = r_X$, then we write $\Lambda(vX) = v(\Lambda X)$ and in case, we will identify $(v(\Lambda X), r_X)$ and $(\Lambda(vX), \Lambda_v)$. Recall that a covering map $f: Y \to X$ is called $\sigma Z^{\#} - irreducible$ if $\{f(A) : A \in \sigma Z(Y)^{\#}\} = \sigma Z(X)^{\#}$ and that a subspace D of a space X is $\sigma Z^{\#}$ - embedded if for any $B \in \sigma Z(D)^{\#}$, there is S $B \in \sigma Z(X)^{\#}$ such that $S \cap D = B$. For any compact space X, Λ_X is $\sigma Z^* - irreducible$ [3] and every dense C^* - embedded subspace of a space is $\sigma Z^{\#}$ - embedded.

We will give some characterizations of a space X for which $\Lambda(vX) = v(\Lambda X)$.

Definition 2.1. Let X be a space. A $\sigma Z(X)^*$ - ultrafilter α is called *real* if $\bigcap \{ \operatorname{cl}_{\beta X}(A) : A \in \alpha \} \in \nu X$.

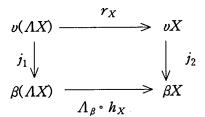
Theorem 2.2. Let X be a space. Then we have the following:

- (a) Suppose that every $\sigma Z(X)^{\#}$ -ultrafilter has the countable intersection property and $\Lambda(\beta X) = \beta(\Lambda X)$. Then r_X is a covering map.
 - (b) The following are equivalent:
 - (1) $\Lambda(vX) = v(\Lambda X)$,
 - (2) if $\{A_n: n \in N\}$ is a decreasing sequence in $\sigma Z(X)^*$ with $\bigcap \{A_n: n \in N\} = \phi$,

then $\bigcap \{ \operatorname{cl}_{nX}(A_n) : n \in \mathbb{N} \} = \phi$,

- (3) if $\{A_n: n \in N\}$ is a decreasing sequence in $\sigma Z(X)^*$, then $\operatorname{cl}_{\nu X}(\bigcap \{A_n: n \in N\}) = \bigcap \{\operatorname{cl}_{\nu X}(A_n): n \in N\}$, and
 - (4) every real $\sigma Z(X)^{\#}$ -ultrafilter has the countable intersection property.

Proof. (a) Let $j_1: v(\Lambda X) \to \beta(\Lambda X)$ and $j_2: vX \to \beta X$ be inclusion maps. The following diagram commutes.



 $j_2 \circ r_X \circ v_A = j_2 \cdot v_X \circ \Lambda_X = \Lambda_\beta \circ h_X \circ j_1 \circ v_A$ and VA dense, $j_2 \circ m_X = \Lambda_\beta \circ h_X \circ j_1$. Let $p \in vX$ and $\alpha \in \Lambda^{-1}_\beta(p)$. Suppose that $\alpha \notin v(\Lambda X)$. Then there is a sequence $\{Z_n: n \in N\} \in \sigma Z(\beta(\Lambda X))^*$ such that for any $n \in N$, $\alpha \in \operatorname{int}_{\beta(\Lambda X)}(Z_n)$ and $(\bigcap \{Z_n : n \in N\}) \cap \Lambda X = \phi$ [4]. Since Λ_β is σZ^{\sharp} -irreducible, $\Lambda_{\beta}(Z_n) \in \sigma Z(\beta X)^{\#}$. Hence $\alpha_X = \{U \cap X : U \in \alpha\}$ is a $\sigma Z(X)^{\#}$ ultrafilter. Let $n \in \mathbb{N}$. Since $\alpha \in \operatorname{int}_{\beta(AX)}(Z_n)$ and $\{A^* : A \in \sigma Z(\beta X)^*\}$ is a base for $\beta(\Lambda X)$, there is $A \in \sigma Z(\beta X)^{\#}$ with $\alpha \in A^* \subseteq Z_n$ and hence $\Lambda_{\beta}(\alpha) \in \Lambda_{\beta}(A^*) =$ $A \subseteq \Lambda_{\beta}(Z_n)$. So $\Lambda_{\beta}(Z_n) \in \alpha$. Hence for any $n \in \mathbb{N}$, $\Lambda_{\beta}(Z_n) \cap X \in \alpha_X$. Since $p \in vX$, a_X is real and so $\bigcap \{ \Lambda_{\beta}(Z_n) \cap X : n \in \mathbb{N} \} \neq \emptyset$. Pick $x \in \bigcap \{ \Lambda_{\beta}(Z_n) \cap X : n \in \mathbb{N} \}$. Let $n \in \mathbb{N}$. Then $\Lambda_{\beta}^{-1}(x) \cap Z_n \neq \phi$. Since $\Lambda_{\beta}^{-1}(x) = \Lambda_X^{-1}(x)$, $\Lambda_X^{-1}(x) \cap Z_n \neq \phi$. Since $\Lambda_X^{-1}(x)$ is compact and $\bigcap \{\Lambda_X^{-1}(x) \cap Z_n : n \in N\}$ is a decreasing family of closed sets in $\Lambda_X^{-1}(x)$ with the finite intersection property, $\bigcap \{\Lambda_X^{-1}(x) \cap Z_n :$ $n \in \mathbb{N}$ } $\neq \phi$ and hence $(\bigcap \{Z_n : n \in \mathbb{N}\}) \cap \Lambda X \neq \phi$. This is a contradiction. Hence $\alpha \in v(\Lambda X)$. Thus r_X is onto. Since j_1 and j_2 are dense and $\beta(\Lambda X)$ and βX are compact, r_X is a covering map [4].

(b) (1) \Rightarrow (2) Suppose that there is a sequence $\{A_n: n \in N\}$ in $\sigma Z(X)^*$ such that $\bigcap \{ \operatorname{cl}_{vX}(A_n) : n \in \mathbb{N} \} \neq \emptyset. \text{ Since } \beta(v(\Lambda X)) = \beta(\Lambda X) = \Lambda(\beta X) = \Lambda(\beta(vX)), \Lambda(vX)$ is given by the filter space $\{\alpha: \alpha \text{ is } \alpha \text{ fixed } \sigma Z(\nu X)^{\#} - \text{ultrafilter }\}$ and $\operatorname{cl}_{\nu X}(A_n)$ $\in \sigma Z(vX)^{\#}$ for all $n \in \mathbb{N}$, by Proposition 1.3, $\Lambda_v(\bigcap \{(\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N}\}) =$ $\bigcap \{ \operatorname{cl}_{vX}(A_n) : n \in \mathbb{N} \}. \text{ Since } \bigcap \{ \operatorname{cl}_{vX}(A_n) : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^* : n \in \mathbb{N} \} / = \phi, \bigcap \{ (\operatorname{cl}_{vX}(A_n))^*$ $n \in N$ } $\neq \phi$. Note that for any $n \in N$, $(\operatorname{cl}_{\nu X}(A_n))^* = \operatorname{cl}_{\Lambda(\nu X)}(\Lambda_{\nu}^{-1}(\operatorname{int}_{\nu X}(\operatorname{cl}_{\nu X}(A_n)))^*)$ $A_n)))$. Let $t \in \bigcap \{ \operatorname{cl}_{A(vX)}(A_v^{-1}(\operatorname{int}_{vX}(\operatorname{cl}_{vX}(A_n)))) : n \in \mathbb{N} \}.$ Then there is the $\sigma Z(X)^{\#}$ -ultrafilter α such that $t \in \bigcap \{ \operatorname{cl}_{\Lambda(\nu X)}(A) : A \in \alpha \} [4]$. Since $t \in \nu(\Lambda X)$, the $\sigma Z(X)^{\#}$ -ultrafilter α has the countable intersection property. Let $n \in \mathbb{N}$. Then there is $B_n \in \sigma Z(vX)^*$ such that $B_n \cap X = A_n$. Since $\Lambda_X(\operatorname{cl}_{\Lambda(vX)}(\Lambda_v^{-1}(\operatorname{int}_{vX}(B_n))) \cap \Lambda X)$ $= \Lambda_X(\operatorname{cl}_{\Lambda X}(\Lambda_X^{-1}(\operatorname{int}_X(A_n)))), \operatorname{cl}_{\Lambda(vX)}(\Lambda_v^{-1}(\operatorname{int}_{vX}(B_n))) = \operatorname{cl}_{\Lambda(vX)}(\Lambda_v^{-1}(\operatorname{int}_{vX}(A_n)))$ $(\operatorname{cl}_{vX}(A_n))) = \operatorname{cl}_{\Lambda(vX)}(\operatorname{cl}_{\Lambda X}(\Lambda_X^{-1}(\operatorname{int}_X(A_n)))).$ Thus $t \in \operatorname{cl}_{\Lambda(vX)}(\operatorname{cl}_{\Lambda X}(\Lambda_X^{-1}(\operatorname{int}_X(A_n))))$ $(\operatorname{int}_X(A_n)))$. Since $\operatorname{cl}_{\Lambda(vX)}(\Lambda_v^{-1}(\operatorname{int}_{vX}(B_n))) \in \sigma Z(\Lambda(vX))^*$ and $\Lambda(vX)$ is basically disconnected, $\operatorname{cl}_{\Lambda(vX)}(\Lambda_v^{-1}(\operatorname{int}_{vX}(B_v))) \in B(\Lambda(vX))$. Hence $\operatorname{cl}_{\Lambda X}(\Lambda_X^{-1})$ $(\operatorname{int}_X(A_n))) \in \alpha$ and so $\bigcap \{ \operatorname{cl}_{AX}(A_X^{-1}(\operatorname{int}_X(A_n))) : n \in \mathbb{N} \} = \bigcap \{A_n : n \in \mathbb{N} \}$ $N \} \neq \phi$.

(2) \Rightarrow (3) Suppose that $p \notin \operatorname{cl}_{vX}(\bigcap\{A_n: n \in N\})$. Then there is $B \in \sigma Z(vX)^*$ such that $p \in \operatorname{int}_{vX}(B)$ and $B \cap (\bigcap\{A_n: n \in N\}) = \phi$. Since $\{C \wedge A_n: n \in N\}$ is a decreasing sequence in $\sigma Z(X)^*$ with empty intersection, $\bigcap\{\operatorname{cl}_{vX}(C \wedge A_n): n \in N\} = \phi$. Suppose that $p \in \bigcap\{\operatorname{cl}_{vX}(A_n): n \in N\}$. Let W be a neighborhood of p in vX and $n \in N$. Then $\operatorname{int}_{vX}(W) \cap \operatorname{int}_{vX}(B) \cap A_n \neq \phi$. Since $C \wedge A_n = \operatorname{cl}_X(\operatorname{int}_X(C \cap A_n)) = \operatorname{cl}_X(\operatorname{int}_X(C) \cap \operatorname{int}_X(A_n)) \supseteq \operatorname{int}_X(C) \cap A_n = \operatorname{int}_X(B \cap X) \cap A_n \supseteq \operatorname{int} vX(B) \cap A_n, (C \wedge A_n) \cap W \supseteq \operatorname{int}_{vX}(B) \cap A_n \cap W \neq \phi$. Hence $p \in \bigcap\{\operatorname{cl}_{vX}(C \wedge A_n): n \in N\}$ and so $p \in \bigcap\{\operatorname{cl}_{vX}(A_n): n \in N\}$.

(3) \Rightarrow (4) Let α be a real $\sigma Z(\nu X)^{\#}$ -ultrafilter and $\{B_n: n\in N\}\subseteq \alpha$. For any $n\in N$, let $A_n=\wedge\{B_i: 1\leq i\leq n\}$. Then $\{A_n: n\in N\}$ is a decreasing sequence in

 $\sigma Z(X)^*$. Since α is real, there exist a $p \in \nu X$ such that $p \in \bigcap \{ \operatorname{cl}_{\nu X}(A_n) : n \in N \}$. By the hypothesis, $p \in \operatorname{cl}_{\nu X}(\bigcap \{A_n : n \in N \})$. Hence $\bigcap \{A_n : n \in N \} \neq \emptyset$ and so $\bigcap \{B_i : i \in N \} \neq \emptyset$. Thus α has the countable intersection property.

(4) \Rightarrow (1) By Propersition 1.2 and (a) in this theorem, r_X is covering and so there is a covering map $t: v(\Lambda X) \to \Lambda(vX)$ with $r_X = \Lambda_v \circ t$. Suppose that $x \neq y$ in $v(\Lambda X)$. Then there are $A, B \in \sigma Z(v(\Lambda X))^*$ such that $x \in A, y \in B$ and $A \cap B = \phi$. Since $\Lambda(vX)$ is dense C^* -embedded in $\Lambda(\beta X) = \beta(\Lambda X)$, $\Lambda(vX)$ is $\sigma Z(X)^*$ -embedded and so $t \circ \Lambda_v$ is σZ^* -irreducible [3]. Hence t is σZ^* -irreducible. Since $A \land B = \phi$ and t is a covering map, $t(A) \land t(B) = \phi$. Since t is σZ^* -irreducible, $t(A), t(B) \in \sigma Z(\Lambda(vX))^* = B(\Lambda(vX))$ and so $t(A) \cap t(B) = \phi$. Hence $t(x) \neq t(y)$ and so t is t. Thus t is a homeomorphism.

References

- Adámek, J., Herrlich H., Strecker, G. E., Abstract and concrete categories, Wiley and Sons Inc., 1990.
- 2. Kim, C. I., "Minimal covers and filter spaces," Topol. and Its Appl. 72(1996), 31-37.
- 3. Kim, C. I., "Projective objects in the category of compact spaces and σZ^* -irreducible maps," *Historia Mathematica* vol. 11, no. 2(1998), 83-90.
- Porter, J., Woods, R. G., Extensions and Absolutes of Hausdorff Spaces, Springer, 1988.
- 5. Vermeer, J., "The smallest basically disconnected preimage of a space," *Topol. and Its Appl.* 17 (1984) 217-132.