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Hewitt Realcompactification and
Basically Disconnected Cover#*

Abstract

We show that if the Stone-Cech compactification of AX and the minimal basically

disconnected cover of BX are homeomorphic and every real ¢Z(X)*-ultrafilter on
X has the countable intersection property, then there is a covering map from v(AX)

to ©X and every real ¢Z(X)"-ultrafilter on X has the countable intersection
property if and only if there is a homeomorphism from the Hewitt realcompactification

of AX to the minimal basically disconnected space of vX.

0. Introduction

All spaces in this paper are assume to be Tychonoff and for a space X,

let (BX,Bx) ((vX,vx), resp.) denotes the Stone-Cech compactification (Hewitt

realcompactification, resp.) of X. For any regular space X, there is the absolute

(EX,kx) of X and if X is Tychonoff, then there is a homeomorphism
k: B(EX) — E(B8X). Moreover, for any space X, the following are eguivalent :

(1) there is a homeomorphism v(EX) — E(vX),

(ii) if {A,: nEN} is a decreasing sequence in R(X) and N{A,: ne N} = ¢,
then N{ cl,x(A,): neN} =4,

(i) if {A,: #nEN} is a decreasing sequence in R(X), then cl ,x(N{A,: neN})

=MN{ cl,x(A,) : neN}, and

* The present research was conducted by the research fund of Dankook University in 2001.
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Heuwitt realcompactification and basically disconnected cover

(iv) every stable R(X)-ultrafilter has the countable intersection prorerty [4].

For any Tychonoff space X, there is a minimal basically disconnected cover (AX, Ax)
[5] and if X is locally weakly Lindelof, then AX are given by a filter space [2] and [4].

In this paper, we show that if the Stone-Cech compactification of AX and the
minimal basically disconnsted cover of AX are homeomorphic, then AX is a filter
space and' that if every real ¢Z(X)*-ultrafilter on X has the countable intersection
property, then there is a covering map from v(AX) to vX. Using this, we will show
that if the Stone-Cech compactification of AX and the minimal basically disconnsted
cover of AX are homeomorphic, then every real o¢Z(X)"*-ultrafilter on X has the
countable intersection property if and only if there is a homeomorphism from the Hewitt
realcompactification of AX to the minimal basically disconnected space of vX. For
the terminology, we refer to [1] and [4].

1. Fixed ¢Z(X)*-ultrafilter space

Recall that a subspace Y of a space X is said to be C*— embedded in X if for any
bounded real-valued continuous map f: Y — R, there is a bounded real-valued
continuous map g:X — R with g| y=f and that a space X is called

basically disconnected if every cozero-set in X is C'- embedded in X.

Definition 1.1. Let X be a space. Then a pair (Y, f) is called

(1) acover of X if f: Y— X 1is a covering map,

(2) a basically disconnected cover of X if (Y, f) is a cover of X and Y is a
basically disconnected space and,

(3) a minimal basically disconnected cover of X if (Y, f) is a cover of X and
it is a basically disconnected cover of X and for any basically disconnected cover

(Z, g) of X, there is a covering map k£: Z— Y with f-h=g

For any space X, the collection R(X) of all regular closed sets in X, when
partially ordered by inclusion, becomes a complete Boolean algebra, in which the join,
meet, and complementation operations are defined as follows:
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If AesR(X) and {A4; :iel} € R(X), then
V{A;:iell= cyx (U{4;:ieD),
N{A;:iel= clx ( intx(N{A;: i€l})), and
A'= cdx(X—-A)
and a sublattice of R(X) is a subset of R(X) that contains ¢ , X and is closed
under finite joins and meets [4].

A lattice L is called o-— complete if every countable subset of L has join and meet.
For a subset M of a complete Boolean algebra L, oM denotes the smallest ¢
-complete Boolean subalgebra of L containing M. For any space X, Z(X) denotes
the set of all zero-sets and let Z(X)"={clx(intx (A)) : A= Z(X)}. For a space X
and a zero-set Z in X, there is a zero-set A in BX with ANX=2Z. 1t is
well-known that for any covering map f: Y — X, the map ¢: R(Y) —» R(X),
defined by ¢(A)= f(A), is a Boolean isomorphism and that for any extension Y of
a space X, the map ¢ :R(Y) -R(X), defined by ¢(A)=ANX, is a Boolean
isomorphism.  Hence, for any space X, the isomorphism ¢ : R(B8X) — R(X)
induces Boolean isomorphisms ¢Z(BX )" — oZ(X)* and oZ(vX)* — ocZ(X)*.

For any space X, (AX,Ax) ((A(BX),Ap), resp.) denotes the minimal basically
disconnected cover of X(AX, resp.). Vermeer showed that for a compact space X,
AX is given by the Stone-space S(aZ(X)") of 6Z(X)* and Ax(a)=Nea (5]

Recall that a space X is called weakly Lindelof if every open cover of X has a
countable subfamily that is dense in X and that a space X is called locally weakly
Lindelsf if every element of X has a weakly Lindeléf neighborhood. In [2] and [4], it
is shown that for any locally weakly Lindelof space X, AX is given by the filter

space {a: @ is a fixed 0Z(X)"—ultrafilter} and Ax(a)=Na.
For a space X, there is the Stone extension A% : B(AX) — BAX of Bx-Ax.

Since A(AX) and AX are compact, A is a covering map and since BAX) is
basically disconnected [5], there is a covering map hyx: B(AX) — A(BX)

Af=4 g°hx. If hx is a homeomorphism, then we write A(AX) = A(BX) and in
case, we will identify (B(AX), A?) and (A(BX), Ap). In [2]), it is shown that if X
is a weakly Lindelof space, then B(AX) = A(BX).
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Proposition 1.2. Suppose that X is a space and A(AX) = A(BX). Then AX is
given by the filter space {a: @ is a fixed 0Z(X)*— ultrafilter }.

Proof. Since the diagram

A7 x) e o x

il | &

AAX) “——A—ﬁ“——> BX

is a pullback in the category Top, there is a continuous map hy : AX — A B_I(X)
such that Ay, °hy =Ax and ;- hy =hx° Bix , where j is the inclusion map and
A, is the restriction and corestriction of A, with respect to A FU(X) and X,
respectively. Take any x€& AB‘I(X). Then there is y= 8(AX) with hx(y) =2x and
Ap(x)= Az (x)eX. Since Ay is a covering maps, y € AX. Hence hx is onto.
Since Ap, ° hx =Ax and Ay is perfect, hx is a perfect map [4]. Since hx is
1 — 1, kx is a homeomorphism. Hence (A EI(X), Ag,) is the minimal basically
disconnected cover of X. Thus A;'(X) is the fixed 0Z(X)"-ultrafilter {a: a is
a fixed ¢Z(X)"— ultrafilter }.

Propostion 1.3. Let X be a space. Suppose that AX is given by the fixed aZ(X)*
-ultrafilter space. Then for any decreasing sequence (A,), in oZ(X)"
Ax(N {A: neN)=N{A,: neN}, where A,={a: aisa fixed sZ(X)*
— ultrafiter and A,=a }.

Proof. Take any A€ 0Z(X)* and a=A). Then Ax(A")SA.
Take any x<A. Let a,={BeodZ(X)": xe intx(B)}. Then a.U{A} has the

finite meet property and hence there is a oZ(X)*-ultrafilter @ containing a,\J{A}.
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Since a, is a local base at x in X, Ax(a)=MNe=x and so ASAx(A). Thus
Ax(N{A,: neN}) € N{A,: neN}. Take any y&({A,: neN}, then
a,\UJ{A,: neN} has the finite meet property and hence it is contained in a
6Z(X)* —ultrafilter 7 and so 7€ N{ A*,: n€N} and Ax(n=y.

2. Hewitt. realcompactification and minimal basically disconnected cover

In the following, we may assume that every space has the property A(BX)=p8(AX).
For any space X, letv: AX — v(AX) be the Hewitt realcompactification of AX and
(A(vX),A,) the minimal basically disconnected cover of »X. Since X is

realcompact, there is a continuous map 7x: o(AX) —> X such that
vx° Ax=rx° v, [4]. If there is a homeomorphism % : o(AX) — A(vX) such that
A, k=rgx, then we write AoX)=v(AX) and in case, we will identify
(AAX), ry) and (A(vX),A,). Recall that a covering map f:Y — X is called
oZ' — irveducible it {f (A): AeoZ(Y)"}=0Z(X)" and that a subspace D of a
space X is aZ'— embedded if for any Be oZ(D) * there is S BedZ(X)* such that
S\ D=B. For any compact space X, Ax is oZ"— irreducible [3] and every dense

C" — embedded subspace of a space is 0Z" — embedded.
We will give some characterizations of a space X for which A(0X) = o(AX).

Definition 2.1. Let X be a space. A oZ(X)"~ ultrafiter @ is called 7ea/ |if
N{ clgx(A) : Asa }eX.

Theorem 2.2. Let X be a space. Then we have the following:
(a) Suppose that every o0Z(X)"-ultrafilter has the countable intersection property and
A(BX)=B(AX). Then ryx is a covering map.
(b) The following are equivalent:
(1) A(vX) = o(AX),
(2) if {A,: n=N} is a decreasing sequence in aZ(X)* with {A,: neN }=¢,
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then N cl ,x(A,) : neN }=4,
(3) if {A,: neN} is a decreasing sequence in 6Z(X)", then
cx(N{A,: neN}) =N{ cl,x(A,): neN}, and

(4) every real ¢Z(X)*-ultrafilter has the countable intersection prorerty.

Proof. (a) Let j;: v(AX) — A(AX) and j, : vX — BX be inclusion maps.

The following diagram commutes.

rx
o(NX) ——— > X

il | »

BAX) —> BX
Aﬂ" hX

Since Jeerxeva=Jo.0x° Ax=Aghx°j1° 024 and Va4 is dense,
jpemyx=Ag>hxej. Let p€vX and e€ A ~!,(p). Suppose that a¢ v(AX).
Then there is a sequence {Z,: n€ N} e dZ(HAX))* such that for any neN,
¢ € int ga(Z,) and (N{Z,: neN)}) N AX=¢ [4. Since Az is doZ'
-irreducible, Aﬂ(Z,,)EO'Z(BX)”. Hence ax={UNX: Uea} is a dZX)"
ultrafilter. Let #< N. Since @€ int gan(Z,) and {A”: A oZ(BX)*} is a base
for A(AX), there is A oZ(BX)" with e A’SZ, and hence A ga)ed (A")=
ASA (Z,). So A(Z,)=a. Hence for any neN, ALZ,) N XE€ax. Since pevX,
ax is real and so N{A LZ,) N X : neN}+¢. Pick x€N{A(Z,) N X : neN}.
Let neN. Then A3 (%) N Z,# ¢. Since A (x)=A%(x), AXXINZ,+ ¢.
Since Ax !'(x) is compact and N{ Ax~'(x) N Z,: neN} is a decreasing family
of closed sets in /A x ' (x) with the finite intersection property, N{ Ax T Nz,:
neN}+# ¢ and hence (N{Z,: neN}) N AX+ ¢. This is a contradiction. Hence
acsvo(AX). Thus 7y is onto. Since j, and j, are dense and A(AX) and BX are

compact, 7x is a covering map [4].
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(b) (1)=(2) Suppose that there is a sequence {A,: #neN} in 6Z(X)* such that
({ cl,x(A,) : neN }+¢. Since B((AX))=AX)=A(BX) = A(B(vX)), A(vX)
is given by the filter space {@: @ is a fixed oZ(2X)"— ultrafilter } and cl ,x(A4,)
edZ(vX)! for all neN, by Proposition 1.3, A, (N{( cl,x(A4,)": neN D=
N{ cl x(A,) : neN} Since N{ clx(A): neN}/=4¢ N{( c,x(A4,))":
neN }+# ¢. Note that for any #neN, ( cl x (AN = cl a0 (A4, int ,x( cl x(
AD)). Let t €N{ ol gm0 (A, int x( cl x(A,))) : neN}. Then there is the
0Z(X)"-ultrafilter @ such that # €N{ cl g0 (A) : A=a } [4]. Since t €v(AX), the
0Z(X)"-ultrafilter @ has the countable intersection property. Let neN. Then there is
B,=0Z(vX)" such that B, NX=A,. Since Ax( cl s (A ;' ( int ,x(B,)) N AX)
=Ax( cax(Ax' Cintx(A))),  claeo (A1 it x(Bu)) = claex (A, int x
(e ux(A))) = clawn( dax(Ax'( intx(A,)))). Thus t € cl 4o ( clax(Ax!
( intx(A,))). Since ¢l gox (A, int x(BONeE oZ(A(wX)* and A(eX) is
basically disconnected, cl 40,0 (A, ( int ,x(B,))) € B(A(2X)). Hence cl x(Ax!
(intx(A,))) €a and so N A ax(Ax (C intx(A4,) : » eN}=N{A,: ne
N}+#¢.

(2)=(3) Suppose that p & cl x( N{A,: » €N }). Then there is B €dZ(vX)"
such that p € int ,x(B) and BN (N{A,: n eN})=¢. Since {CANA,.n €N}
is a decreasing sequence in ¢Z(X)" with empty intersection, N{ cl ,x(CAA,) :
n €N }=¢. Suppose that p € N{ cl ,x(A,) : n €N }. Let W be a neighborhood of
'p in X and #n=N. Then int  x(W) N int,x(B) N A,#*¢. Since CAA,=

cx( intx(C N AY) = clx( intx(C) N intx(A,)) 2 intx(C) N A,= inty
(BNX)NA,2int oX(B)NA, (CAA)N W2 int x(B)NA,N W+ .
Hence peN{ cl x(CAA,): neN} and so p €{cl, (A, : neN}.

(3) = (4) Let a be a real o¢Z(vX)"-ultrafilter and {B,: €N } < a. For any

neN,let A,=A{B;.1<i<n}. Then {A,: n= N} is a decreasing sequence in

- 167 -



Heuwitt realcompactification and basically disconnected cover

oZ(X)*. Since a is real, there exist a p=vX such that peN { cl ”X(An> : neN }
By the hypothesis, p € cl x(N{A,: neN}). Hence N{A,: neN}+ ¢ and so
N{B;: ieN}+# ¢. Thus a has the countable intersection property.

(4) = (1) By Propersition 1.2 and (a) in this theorem, 7x is covering and so
there is a covering map ¢: H(AX) — A(vX) with »x=A,° . Suppose that x¥yin
o(AX). Then there are A, Be oZ(o(AX))* such that x€ A, ye¢ B and
ANB=¢. Since A(vX) is dense C'-embedded in A(BX) = J(AX), A(vX) is
0Z(X)*-embedded and so t°A, is oZ'-irreducible [3]. Hencet is oZ"'-irreducible.
Since AAB=¢ and #is a covering map, {A)AKB)=¢. Since tis aZ"-irreducible,
t(A), t(B) e aZ(A(vX )" = B(A(vX)) and so t(A) N #(B) =¢. Hence
H(x)# #y) and so tis 1 — 1. Thus ¢is a homeomorphism.
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