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THE PSEUDO ORBIT TRACING PROPERTY AND

EXPANSIVENESS ON UNIFORM SPACES

Kyung Bok Lee

Abstract. Uniform space is a generalization of metric space. The
main purpose of this paper is to extend several results contained
in [5, 6] which have for an expansive homeomorphism with the
pseudo orbit tracing property(POTP in short) on a compact metric
space (X, d) for an expansive homeomorphism with the POTP on
a compact uniform space (X,U).

we characterize stable and unstable sets, sink and source and
saddle, recurrent points for an expansive homeomorphism which
has the POTP on a compact uniform space (X,U).

1. Introduction and preliminaries

In 1987, Jerzy Ombach had characterized results concering the class
of expansive homeomorphisms having the pseudo orbit tracing property
on a compact metric space (X, d). Uniform space (X,U) is a generaliza-
tion of metric space (X, d).

The main purpose of this paper is to extend some main theorems
contained in [5] for an expansive homeomorphism with the POTP on a
compact uniform space (X,U).

We prove here Theorem 2.3, Theorem 3.10 and Theorem 4.1 for an
expansive homeomorphism f : (X,U) → (X,U) which has the POTP
on a compact uniform space (X,U).

We now introduce a definition of uniform space.

Definition 1.1. A uniform structure or uniformity U on a set X is
a collection of subsets of X ×X satisfying the following properties:

(1) Each member of U contains the diagonal 4.
(2) If α ∈ U and α ⊂ β ⊂ X ×X, then β ∈ U .
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(3) If α and β are members of U , then α ∩ β is also a member of U .

(4) If α ∈ U , then α−1 = {(y, x) | (x, y) ∈ α} ∈ U .

(5) For any α ∈ U , there is β ∈ U such that β2 = β ◦ β ⊂ α, where

β ◦ β = {(x, y) | there exists z ∈ X with(x, z) ∈ β, (x, y) ∈ β}.

The set X equipped with a uniformity U is called a uniform space
and an element of U called an entourage of X. An entourage α of X is
called symmetric if α−1 = α.

Remark 1.2. If X is a uniform space, then the topology = on X
induced by U is the collection of all subsets U of X such that for each
x ∈ U there is α ∈ U with α[x] = {y | (x, y) ∈ α} ⊂ U , and a uniform
space X is Hausdorff if and only if

⋂
α∈U α ∈ 4X .

More details for uniform spaces is contained in [4].

Definition 1.3. Let X be an uniform space and f : X → X be a
homeomorphism. Let α and β be entourages of X. A sequence of points
{xn}n∈Z is called a β-pseudo orbit for f if (f(xn), xn+1) ∈ β for all in
n ∈ Z. A sequence {xn}n∈Z is α-traced if there is a point x ∈ X such
that (fn(x), xn) ∈ α for all in n ∈ Z.

The homeomorphism f has the pseudo orbit tracing property(POTP
in short) if for any entourage α there is an entourage β such that any
β-pseudo orbit is α-traced. A homeomorphism f is said to be expan-
sive(EXPS in short) if there is an entourage αf such that (fn(x), fn(y)) ∈
αf for all n ∈ Z and x, y ∈ X implies x = y.

2. Stable and unstable sets

To prove main theorems we need the following Lemma 2.1 and Lemma
2.2, which we give without proofs.

Lemma 2.1. Let f : X → X be a homeomorphism on uniform space
X and let n ∈ Z − {0}. Then f : X → X has POTP if and only if
fn : X → X has POTP.

Also f : X → X is EXPS if and only if fn : X → X is EXPS.

Let f : X → X be a homeomorphism on uniform space X. For
N > 0, we denoted by

VN = {(x, y) ∈ X2 | (fn(x), fn(y)) ∈ α for all |n| ≤ N and entourageα}
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Lemma 2.2. Let a homeomorphism f : X → X be expansive on
uniform space X. Then

(1) for every entourage α, there is N ∈ N such that VN ⊂ α,
(2) for every N ∈ N, there is entourage α such that α ⊂ VN .

Let (xn) and (yn) be sequences on uniform space X.
If for any entourage α, there exists n ∈ N such that (xn, yn) ∈ α,

then we denote (xn, yn)→ 0 as n→∞.
Let f : X → X be a homeomorphism on uniform space X. Let x ∈ X

and an entourage α.
We define the local stable set and local unstable set of x by
(a) W s

α = {y ∈ X | (fn(x), fn(y)) ∈ α for alln ≥ 0},
(b) W u

α = {y ∈ X | (fn(x), fn(y)) ∈ α for alln ≤ 0}.
And also, for x ∈ X the stable set and unstable set are defined by
(c) W s = {y ∈ X | (fn(x), fn(y))→ 0 for alln→∞},
(d) W u = {y ∈ X | (fn(x), fn(y))→ 0 for alln→ −∞}.

Theorem 2.3. Let X be a compact uniform space and f : X → X
be a homeomorphism. Assume that f is an expansive with the pseudo
orbit tracing property.

Then there is entourage α0 such that for every entourage α ⊂ α0,
there is entourage β and continuous function h : β → X such that

(A) for every x, y ∈ X, W s
α(x) ∩W u

α (y) consists at most one point ;
for (x, y) ∈ β, W s

α(x) ∩W u
α (y) = {h(x, y)},

(B) for every x ∈ X,
W s
α(x) ∩ β[x] = {y | y = h(x, y), (x, y) ∈ β},

W u
α (x) ∩ β[x] = {y | y = h(y, x), (x, y) ∈ β},

(C) W s
α(x) ⊂W s(x),W u

α (x) ⊂W u,
(D) W s(x) = ∪∞n=0f

−n(W s
α(fn(x))),

W u(x) = ∪∞n=0f
n(W u

α (f−n(x))).

Proof. Let αf be entourage for an expansive homeomorphism f . There
exists entourage α0 such that α3

0 ⊂ αf .
Let α ⊂ α0. By the uniform continuity of f , there exists entourage

β0 ⊂ α such that (x, y) ∈ β0 implies (f(x), f(y)) ∈ α.
Since f ∈ POTP, there is entourage β such that every β-pseudo orbit

is β0-traced. Fix (x, y) ∈ β.
Consider a sequence {xn} defined as

xn =

{
fn(y) for n < 0
fn(x) for n ≥ 0,

which is a β-pseudo orbit.
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By the POTP of f , it is β0-traced by some point p ∈ X.

We claim that there is only one such point. Suppose that p and p′

are two such points. From (fn(p), xn), (fn(p′), xn) ∈ β for all n ∈ Z, we
have (fn(p), fn(p′)) ∈ β20 ⊂ α2 ⊂ α2

0 ⊂ α3
0 ⊂ αf for all n ∈ Z. Thus we

get p = p′.

Next, define a map h : β → X by h(x, y) = p for each (x, y) ∈ β.

For each (x, y) ∈ β, we obtain the following

(fn(x), fn(h(x, y))) ∈ β0 ⊂ α for alln ≥ 0,

(fn(y), fn(h(x, y))) ∈ β0 ⊂ α for alln < 0.

In particular, (f−1(y), f−1(h(x, y))) ∈ β0. By the choice of β0, we
get (y, h(x, y)) ∈ α. This means that (f(f−1(y)), f(f−1(h(x, y)))) =
(y, h(x, y)) ∈ α. Hence (fn(y), fn(h(x, y))) ∈ α for all n ≤ 0, so that
h(x, y) ∈W s

α(x) ∩W u
α (y).

We claim that h(x, y) = p is unique in W s
α(x) ∩W u

α (y).

Assume that p, p′ ∈ W s
α(x) ∩W s

α(y) with h(x, y) = p, h(x, y) = p′.
Then for every n ≥ 0, by (fn(p), fn(x)) ∈ α−1 = α and (fn(x), fn(p′)) ∈
α, we get (fn(p), fn(p′)) ∈ α2 ⊂ α2

0 ⊂ α3
0 ⊂ αf . Also for every

n ≤ 0, by (fn(p), fn(y)) ∈ α−1 = α and (fn(y), fn(p′)) ∈ α, we have
(fn(p), fn(p′)) ∈ α2 ⊂ α2

0 ⊂ α3
0 ⊂ αf . This means that p = p′ by

expansiveness.

To prove the continuity of the mapping h we use Lemma 2.1. For
each neighborhood U of h(x, y), there exists entourage γ such that
γ[h(x, y)] ⊂ U . By Lemma 2.2, we get VN ⊂ γ for some N ∈ N.
Since f−N , · · · , fN are uniformly continuous, there is entourage δ such
that (U, V ) ∈ δ implies (fk(U), fk(V )) ∈ γ for all |k| ≤ N.

Let (x′, y′) ∈ δ[x] × δ[y]. From (x, x′) ∈ δ and (y, y′) ∈ δ, we obtain
(fn(x), fn(x′)) ∈ γ for all 0 ≤ n ≤ N and (fn(y), fn(y′)) ∈ γ for all
−N ≤ n ≤ 0.

By (fn(h(x, y)), fn(x)) ∈ α−1 = α and (fn(x′), fn(h(x′, y′))) ∈ α for
all n ≥ 0, it follows that (fn(h(x, y)), fn(h(x′, y′))) ∈ α3 ⊂ α3

0 ⊂ α for
all 0 ≤ n ≤ N .

Also by (fn(h(x, y)), fn(y)) ∈ α−1 = α and (fn(y′), fn(h(x′, y′))) ∈ α
for all n ≥ 0, it follows that (fn(h(x, y)), fn(h(x′, y′))) ∈ α3 ⊂ α3

0 ⊂ α
for all −N ≤ n ≤ 0.

Thus (fn(h(x, y)), fn(h(x′, y′)) ∈ αf for all |n| ≤ N , so that

(h(x, y), h(x′, y′)) ∈ VN ⊂ γ. This means that h(x′, y′) ∈ γ[h(x, y)] ⊂
U , i.e., h is continuous. Therefore (A) is proved.
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To show (B), let us note first y = h(x, y) ∈W s
α(x) and for y ∈W s

α(x),
we know y ∈W s

α(x)∩W u
α (y). From (x, y) ∈ β, it follows that y = h(x, y).

The proof of the remaining case is similar.
Next we prove (C). Let y ∈ W s

α(x). For each entourage γ, there
exists N ∈ N such that VN ⊂ γ by Lemma 2.1. Put n ≥ N . From
k + n ≥ 0 for all |k| ≤ N , it follows that (fk(fn(x)), fk(fn(y))) =
(fk+n(x), fk+n(y)) ∈ α ⊂ αf for all |k| ≤ N . Thus (fn(x), fn(y)) ∈
VN ⊂ γ for all n ≥ N , so that (fn(x), fn(y)) → 0 as n → ∞. Con-
sequently, we conclude that y ∈ W s(x). By similar method, we get
W u
α (x) ⊂W u(x).
Finally, the proof of (D) is trivial.

3. Sink, source and saddle

In this section we characterize three types(sink, source and saddle)
of behaviour of orbits near a point on a compact uniform space (X,U)

We assume in the sequel that an expansive homeomorphism f : X →
X which has the POTP on a compact uniform space X = (X,U) and
α ⊂ α0, where α0 is given satisfying the Theorem 2.3.

Define maps L+, L− from X into 2X by setting for each x ∈ X,

L+(x) = {y | fnk(x)→ y for some nk →∞},
L−(x) = {y | fnk(x)→ y for some nk → −∞}.

For each x ∈ X, the set L+(x) is called its positive limit set, and the
set L−(x) is called its negative limit set.

Proposition 3.1. If intW s(x) 6= ∅, then x ∈ intW s(x).

Proof. Let y ∈ intW s(x). There exists entourage α1 such that α2
1 ⊂

α, α1[y] ⊂W s(x), where α is given in Theorem 2.3.
By the POTP of f , every β-pseudo orbit is α-traced for some en-

tourage β. Since f is uniformly continuous, there exists entourage β0
such that

(1)
(u, v) ∈ β0 implies (f(u), f(v)) ∈ β.

Choose entourage γ such that γ2 ⊂ β0. By y ∈W s(x), there is N ∈ N
such that (fn(x), fn(y)) ∈ γ for all n > N .

By the continuity of fN , there exists neighborhood U of x such that
fN (x′) ∈ γ[fN (x)] for all x′ ∈ U . We claim that U ⊂ W s(x). Let
x′ ∈ U . Since (fN (x′), fN (x)) ∈ γ−1 and (fN (x), fN (y)) ∈ γ, we have
(fN (x′), fN (y)) ∈ γ2 ⊂ β0.
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By (1), the sequence {xn} defined by

xn =

{
fn(y) for n ≤ N
fn(x) for n > N,

is a β-pseudo orbit. Hence it is α1-traced by some point y′ ∈ X. This
implies in particular.

(2)

(y′, y) ∈ α,
(3)

(fn(y′), fn(x′)) ∈ α1 for all n > N.

(2) implies y′ ∈ α1[y] ⊂W s(x) and there isN ′ such that (fn(y′), fn(x)) ∈
α1 for all n ≥ N ′ which together with (3) imply (fn(x), fn(x′)) ∈ α2

1 ⊂ α
for all n ≥M , where M = max{N,N ′}. Thus x′ ∈ f−M (W s

α(fM (x))) ⊂
W s(x). Hence the proof is completed.

Proposition 3.2. Let α be any entourage. If x ∈ intW s(x), then
x ∈ intW s

α(x).

Proof. Let x ∈ intW s(x) and α be entourage. It is enough to have
N ∈ N and a neighborhood U1 of x such that (fn(x), fn(y)) ∈ α for all
n > N and all y ∈ U1.

Since fn are continuous for all 0 ≤ n ≤ N , there exists neighborhood
U2 of x such that (fn(x), fn(y)) ∈ α for all 0 ≤ n ≤ N and all y ∈ U2.

Then U = U1 ∩ U2 is a neighborhood of x and U ⊂ W s
α(x). Assume

that is not true, that is,
(4) for any number n ∈ N and any neighborhood U of x there is

entourage α and y ∈ U such that (fn(x), fn(y)) /∈ α.
By x ∈ intW s(x), there exists entourage α1 such that α2

1 ⊂ α and
α1[x] ⊂ W s(x). From the POTP of f , there is entourage β such that
every β-pseudo orbit is α1-traced.

Since f is uniformly continuous, there exists entourage γ such that
(u, v) ∈ γ implies (f(u), f(v)) ∈ β.

To complete the proof of Proposition 3.2, we need the following.

Lemma 3.3. There is a β-pseudo orbit (zn) sequences (li)
∞
i=1, (ni)

∞
i=2

in N with 0 = l1 < n2 < l2 < n3 < · · · such that
(5)

(fni(x), zni) /∈ α,
(6)

zli = f li(x) for all i.
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Proof. Define zn = fn(x) for n ≤ 0 and Put l1 = 0. Assume that we
have already defined numbers ni, li for i ≤ j and points zn for n ≤ lj
such that (5) and (6) hold and (fn(zn), zn+1) ∈ β for n < lj .

Since f lj is continuous, there is a neighborhood U ⊂W s(x) of x such
that (f li(x), f li(p)) ∈ γ for all p ∈ U . By (4), (fnj+1(x), fnj+1(y)) /∈
α for some nj+1 > li and for some y ∈ U . Because y ∈ W s(x),

(f lj+1(x), f lj+1(y)) ∈ γ for some lj+1 > nj+1.

Put zn = fn(y) for lj < n < lj+1 and zlj+1
= f lj+1(x). Since

(f lj (x), f lj (y)) ∈ γ, we have (f(f lj (x)), f(f lj (y))) = (f(zlj ), f
lj+1(y)) =

(f(zlj ), zlj+1
) ∈ β.

Also (f lj+1−1(x), f lj+1−1(y)) ∈ γ implies (f(f lj+1−1(y)), f(f lj+1−1(x))) =
(f(zlj+1−1), f

lj+1(x)) = (f(zlj+1−1), zlj+1
) ∈ β.

Therefore (5) and (6) are also satisfied for j + 1. Thus the Lemma is
proved.

Now to finish the proof of Proposition 3.2, apply to Lemma 3.3. Take
a point x′, α1-tracing the β-pseudo orbit (zn). Then we get (fn(x′), zn) ∈
α1 for all n ∈ Z.

In Particular, (x′, z0) = (x′, x) ∈ α1. By x′ ∈ α1[x] ⊂ W s(x), we get
(fn(x′), fn(x)) → 0 as n → ∞. Since (fni(x), zni) ∈ α1, we conclude
that (fni(x), zni) ⊂ α2

1 ⊂ α.
We have a contradiction to the fact that (fni(x), zni) /∈ α by (5).

This contradiction proves that x ∈ intW s
α(x).

Proposition 3.4. Let α0, α1 be entourages with α4
1 ⊂ α on compact

uniform space X. If x ∈ intW s
α1

(x), then L+(x) is a periodic orbit which

equal to {y, f(y), · · · , fk−1(y)} and y ∈ intW s(x) for all y ∈ L+(x).

Proof. Let x ∈ intW s
α1

(x). There exists entourage α2 ⊂ α1 such that
α2[x] ⊂W s

α1
(x) ⊂W s(x).

By the compactness of X, it follows that L+(x) 6= ∅. Also, it is known
that L+(y) ⊂ L+(x) for all y ∈ L+(x).

We claim that L+(y) = L+(x) for all y ∈ L+(x). Let z ∈ L+(x). For
each neighborhood U of z, it follows that β0[z] ⊂ U for some entourage
β0 ⊂ α0. Choose entourage β1 such that β31 ⊂ β0. By f ∈ POTP , there
is entourage γ such that every γ-pseudo orbit is β1-traced.

Also, y ∈ L+(x) implys (fN (x), y) ∈ γ for some N ∈ N.
Let us defined by

zn =

{
fn(x) for n < N
fn−N (y) for n ≥ N.
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Since a sequence (zn) is a γ-pseudo orbit, (zn) is β1-traced by some
point x′ ∈ X. Because (x′, z0) = (x′, x) ∈ β, it follows that x′ ∈ β1[x] ⊂
β0[x] ⊂ α2[x] ⊂W s(x).

So we get the following, respectively,

(fn(x), fn(x′)) ∈ β for large n,

(fn(x), z) ∈ β1 for infinitely many n, and

(fn(x′)), fn−N (y)) ∈ β1 for n ≥ N.
Thus (fn(x), z) ∈ β31 ⊂ β0, so βn(y) ∈ β0[z] ⊂ U for infinitely many

n. Therefore we conclude that z ∈ L+(y).
Next we shall show that for each y ∈ L+(x), y ∈ intW s(y). Let

y ∈ L+(x). Since f satisfy POTP, there exists entourage β such that
every β-pseudo orbit is α2-traced. Choose entourage γ such that γ2 ⊂ β.
Also y ∈ L+(x) implies (fN (x), y) ∈ γ for some N ∈ N.

To show that γ[y] ⊂ W s(y), let z ∈ γ[y]. We define two sequence
(yn), (zn) by the following

yn =

{
fn(x) for n < N
fn−N (y) for n ≥ N and zn =

{
fn(x) for n < N
fn−N (x) for n ≥ N.

Then this sequences are both β-pseudo orbits, and they are α2-traced
by points y′, z′ ∈ X, respectively. By (y′, y0) = (y′, x) ∈ α2 and (z′, z0) =
(z′, x) ∈ α2, we have y′, z′ ∈ α2[x] ⊂W s

α1
(x).

we obtain for n > 0, respectively, the following

(fn+N (z′), zn+N ) ∈ α2 ⊂ α1,

(fn+N (x), fn+N (z′)) ∈ α1,

(fn+N (x), fn+N (y′)) ∈ α1, and

(fn+N (y), yn+N ) ∈ α2 ⊂ α1.

So we have (fn(y), fn(z)) = (yn+N , zn+N ) ∈ α4
1 ⊂ α.

Thus z ∈W s
α(y) ⊂W s(y). Hence since γ[y] ⊂W s(y), we obtain that

y ∈ intW s(y).
By Proposition 3.1, any neighborhood of a limit point contains a

periodic point. Let p ∈W s(y) be a periodic point. We claim that p = y.
For p 6= y we would find another periodic point q ∈W s(x), q 6= p. Hence
W s(p) = W s(y) = W s(q).

So (fn(p), fn(q)) → 0 as n → ∞, which is impossible. Thus we
conclude that L+(x) = L+(y) = {y, f(y), · · · , fk−1(y)}, where k > 0 is
a periodic of y.
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Proposition 3.5. Let α be an entourage. x ∈ intW s
α(x) if and only

if W s
α(x) ∩H = {x} for some neighborhood H of x.

Proof. Assume that x ∈ intW s
α(x). Take a neighborhood H of x such

that H ⊂ W s
α(x) ∩ β[x], where β is chosen in terms of α as in Theorem

2.3. For y ∈W s
α ∩H, We have y ∈W s

α(x) ∩W u
α (x) = {h(x, x)} = {x}.

Suppose that W u
α (x) ∩H = {x} for some neighborhood H of x.

The continuity of the mapping h : β → X in Theorem 2.3 provides a
neighborhood U of x such that y ∈ U implies h(x, y) ∈ H.

We may assume that α is symmetric. Since x ∈ W s
α(y), we have

y ∈W s
α(x) and so U ⊂W s

α(x). Thus x ∈ intW s
α(x).

Proposition 3.6. Let α, αf be an entourages. Let x ∈ intW s
α(x) be

a periodic point with periodic k and let α ⊂ αf (see Lemma 2.1). Then
there is a neighborhood U of x such that

(7)

fk(U) ⊂ U,
(8)

∞⋂
n=0

fnk(U) = {x}.

Proof. Let x ∈ U1 ⊂ intW s
α(x) for some open U1. For every n ≥ 0, it

follows that fnk(U1) ⊂ α[x].
Define U =

⋃∞
n=0 f

nk(U1). Then U is a neighborhood of x and (7)
holds true. Furthermore, U ⊂ α[x]. Let x′ ∈

⋂∞
n=0 f

nk(U1). Then in
particular x′ ∈ U and by (7), x′ ∈ fnk(U) for any n < 0. So for any n ∈
Z, x′ ∈ fnkα[x] and hence for all n, (fnk

(x′), (fnk
(x)) = (fnk

(x′), x) ∈
α ⊂ αfk . So x′ = x, and (8) is proved.

The following theorem 3.7 summarizes and completes all previous
results.

Theorem 3.7. Let α, α0 be entourages and y ∈ L+(x) for x ∈ X.
Then for a point x ∈ X, the following are equivalent.

(AS) intW s(x) 6= ∅,
(BS) x ∈ intW s(x),
(CS) (x) is open,
(DS) x ∈ intW s

α(x),
(ES) intW s

α(x) 6= ∅,
(FS) intW u

α (x) ∩H = {x} for some neighborhood H of x,
(GS) intW u

α (y) = {y},
(HS) intW u(y) = {y},
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(IS) L+(x) = {y, f(y), · · · , fk−1(y)} is a periodic orbit.
There is a neighborhood U of y such that
(9) fk(U) ⊂ U ,
(10)

⋂∞
n=0 f

nk(U) = {x}.

Proof. (AS) =⇒ (BS) by Proposition 3.1.
To see that (BS) =⇒ (CS) consider a point z ∈W s(x). ThenW s(z) =

W s(x) contains x in its interior. By Proposition 3.1, z ∈ intW s(z) =
intW s(x) and hence W s

α(x) is open. (CS) =⇒ (DS) Proposition 3.2.
(DS) =⇒ (ES) is trivial.
(ES) =⇒ (AS) by Theorem 2.3 (C).
(DS) =⇒ (FS) by Proposition 3.4.
Thus we have proved equivalences among conditions (AS) to (FS).
Now we shall prove (AS) =⇒ (IS). By Proposition 3.2, x ∈ intW s

α0
(x).

By Proposition 3.2, y ∈ intW s(y) and y is periodic. Once again by
Proposition 3.2, y ∈ intW s

α(y) for small α1. Proposition 3.5 completes
the proof.

To see (IS) =⇒ (HS), take some z 6= y. Then for all n large enough,
z /∈ fnk(U), as (9) implies the sequence fnk(U) decrease. So f−nk(z) /∈
U for such n and z /∈W u(y). Hence W u(y) = {y}.

(HS) =⇒ (GS) by Theorem 2.3 (C).
We prove (GS) =⇒ (DS). W u

α (y) = {y} implies W u
β (y) = {y}, where

β2 ⊂ α and by Proposition 3.4, y ∈ intW s
β(y) = {y}. As y ∈ L+(x),

then there is a number N such that fN (x) ∈ intW s
β(y).

The continuity of fn, 0 ≤ n ≤ N , provides a neighborhood U of x
such that for z ∈ U , (fn(x), fn(z)) ∈ α for 0 ≤ n ≤ N and fN (z) ∈
W s
β(y). It is clear that U ⊂ W s

α(x). So (DS) is true. The proof of
Theorem 3.7 complete.

Applying Theorem 3.7 to the inverseof f we immediately get.

Theorem 3.8. Let x ∈ X and let α, α0 be entourages with α ⊂ α0,
and y ∈ L−(x). Then the following are equivalent.

(AU) intW u(x) 6= ∅,
(BU) x ∈ intW u(x),
(CU) W u(x) is open,
(DU) x ∈ intW u

α (x),
(EU) intW u

α (x) 6= ∅,
(FU) intW s

α(x) ∩H = {x} for some neighborhood H of x,
(GU) intW s

α(y) = {y},
(HU) intW s(y) = {y},
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(IU) L−(x) = {y, f(y), · · · , fk−1(y)} is a periodic point,

There is a neighborhood U of y such that

f−n(U) ⊂ U , and
⋂∞
n=0 f

−nk(U) = {y}.

Assume in the sequel that x is a non-isolated point in the space X
and y ∈ L+(X). Let us note the situations described in Theorem 3.7
and Theorem 3.8 exclude each other. To see this, compare conditions
(DS) and (FU) . There is just on other interesting situation.

It is enough to combine the negation of a condition from (AS) to (IS)
with the negation of a condition from (AU) to (IU) to get the description
of this situation.

Taking advantage of (FS) to (FU), for example, we get

(Y)

any neighborhood of x contains points

xS ∈W s
α(x)− {x}, xU ∈W u

α (x)− {x}, xS 6= xU .

By Theorem 2.3, xS 6= xU implies W s
α(x) ∩W u

α (x) = {x}.

Lemma 3.9. If a point x is periodic, then condition (Y ) is equivalent
to

(X)

any neighborhood of x contains points

xS ∈W s(x)− {x}, xU ∈W u(x)− {x}, xS 6= xU .

Proof. (Y ) =⇒ (X) by Theorem 2.3 (C).

To see (Y ) =⇒ (X), take advantage of (HS)⇐⇒ (FS) and (HU)⇐⇒
(FU) in the case y = x ∈ L+(x) = L−(x).

Now, it makes sense to call a periodic point a sink, if the situation
described in Theorem 3.7 occurs, a source, if the situation described in
Theorem 3.8 occurs, a saddle, if the situation described in Lemma 3.9
occurs.

Similarities to the hyperbolic case are clear. Thus we have

Theorem 3.10. Any periodic point is either a sink or a source or a
saddle.
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4. Recurrent points

Let (X,U) be an uniform space and f : X → X be a homeomorphism.
A fixed point of f is a point x such that f(x) = x; a periodic point is a
fixed point for an iterate of f . we denote by Per(f) the set of periodic
points.

The negative and positive limit set of f are defined by L−(f) =⋃
x∈X L

−(x) and L+(f) =
⋃
x∈X L

+(f).
The nonwandering set is defined by Ω(f) = {x ∈ X | for all neigh-

borhood U of x, there exists n 6= 0 such that fn(U) ∩ U 6= ∅}.
And the chain recurrent set is defined by CR(f) = {x ∈ X | for all

entourage α, there exists α-chain from x to itself }, where an α-chain
from x tor itself is a finite α-pseudo orbit {x0, · · · , xn}, x = x0 = xn, n >
0.

Then by definition Ω(f) and CR(f) are closed invariant sets, and
Per(f) ⊂ L−(f) ∩ L+(f) ⊂ L−(f) ∪ L+(f) ⊂ Ω(f) ⊂ CR(f).

Theorem 4.1. Let (X,U) be compact uniform space. Let f be an
expansive homeomorphism for which f has POTP. Then

Per(f) = L−(f) = L+(f) = Ω(f) = CR(f).

Proof. We must show that CR(f) ⊂ Per(f). Let x ∈ CR(f) and
entourage αf for expansiveness of f . Fixed a entourage α such that
α2 ⊂ αf

POTP provided a β-corresponding to this α, i.e., for any entourage
α there is entourage β such that any β-pseudo orbit is α-traced. There
is a β-chain {x1, x2, · · · , xN} from x to itself.

The sequence (x′n), n ∈ Z defined by x′n = xi if n = i(mod N) is a
β-pseudo orbit.

It is α-traced by some point y ∈ X, but also by fN (y). By (fn(y), x′n) ∈
α and (fn(fN (y)), x′n)) ∈ α for n ∈ Z, it follows that (fn(FN (y)), fn(y)) ∈
α2 ⊂ αf .

Thus fN (y) = y and so y ∈ Per(f). Since (y, x′0) = (y, x) ∈ α, we

get y ∈ α[x]. Consequently, we conclude that x ∈ Per(f).
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