• Title/Summary/Keyword: Propellant(추진제)

Search Result 815, Processing Time 0.033 seconds

Preliminary Design of a High Altitude Test Facility using a Secondary Throat Exhaust Diffuser and an Ejector (이차목 디퓨저와 이젝터를 사용한 고공환경모사장치 예비설계)

  • Kim, Joong-Il;Jeon, Jun-Su;Kim, Tae-Wan;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.475-478
    • /
    • 2012
  • In this study, preliminary design of a high-altitude test facility (HATF) was performed to simulate the high-altitude environment using a rocket engine that liquid oxygen and kerosene were used as the propellant. Experimental facility consists of vacuum chamber, supersonic exhaust diffuser, heat exchanger, ejector and gas generator. The vacuum chamber was simulated and maintained high-altitude environmental pressure by supersonic exhaust diffuser. Combustion gas of the rocket engine was cooled by water at heat exchanger after that the mixed gas was emitted to the air by ejector. The ejector which was operated by the steam generator using 75% ethanol and liquid oxygen as propellants and water for steam maintains a vacuum condition.

  • PDF

Design and Fabrication of Thrust Chamber for Injector verification of 7 tonf-class Thrust Chamber (7톤급 연소기용 분사기 검증을 위한 연소기 설계 및 제작)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.457-460
    • /
    • 2012
  • Design and fabrication of a sub-scale thrust chamber for verification of 7 tonf-class thrust chamber injectors were described in this paper. The 7 tonf-class thrust chamber consists of mixing head with 90 coaxial swirl injectors and regeneratively combustion chamber cooled by kerosene. The coaxial swirl injectors with different pressure drop and recess number were designed for 7 tonf full-scale thrust chamber. By applying the designed injectors to the sub-scale thrust chamber before applying them to the full-scale thrust chamber, the injector performance and functioning were verified. The sub-scale thrust chamber consists of 19 injectors, has chamber pressure of 70 bar, total propellant mass flow rate of 4.3 kg/s, mixture ratio(O/F) of 2.45.

  • PDF

Finding Optimal Mass Flow Rate of Liquid Rocket Engine Using Generic Algorithm (유전알고리즘을 이용한 액체로켓엔진 최적 유량 결정)

  • Lee, Sang-Bok;Jang, Jun-Yeoung;Kim, Wan-Jo;Kim, Young-Ho;Roh, Tae-Seoung;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.93-96
    • /
    • 2011
  • A genetic algorithm (GA) has been employed to optimize the major design variables of the liquid rocket engine. Mass flow rate to the main thrust chamber, mass flow rate to the gas generator and chamber pressure have been selected as design variables. The target engine is the open gas generator cycle using the LO2/RP-1 propellant. The objective function of design optimization is to maximize the specific impulse with condition of energy balance between the pump and the turbine. The properties of the combustion chamber have been obtained from CEA2. Pump & turbine efficiencies and properties of the gas generator have been modeled mathematically from reference data. The result shows 3~4% errors for the specific impulse and 2~6% errors for the pump power of the gas generator cycle compared to references.

  • PDF

A Study on the Steady-State Characteristics of Symmetric Pintle Nozzle with Varying Position of Pintle and Change in Altitude (대칭형 핀틀 노즐의 핀틀 위치와 고도 변화에 대한 정상상태 특성 연구)

  • Jeong, Kiyeon;Kang, Dong-Gi;Jung, Eunhee;Lee, Daeyeon;Choi, JaeSung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.33-45
    • /
    • 2019
  • In this study, numerical simulations were performed to investigate the steady-state characteristics of a symmetric pintle nozzle by varying the position of the pintle and the altitude. The pintle nozzle shape was used in a linear pintle nozzle that had been analyzed prior to the study, and the boundary conditions of the chamber were considered to be according to the propellant burn-back characteristics. A software was used to perform a verification analysis of the square nozzle, pintle nozzle, and high-altitude conditions with an appropriate analytical technique. The pintle position had three different nozzle throat area conditions-: fully closed, half open, and fully open, and the altitude was set at 0, 5, and 20 km. The study compared the thrust, pintle drive load, and static stability at each condition.

Combustion Characteristics of the Gaseous-methane & Gaseous-oxygen Reactants under Highly Fuel-rich Conditions (연료과농 조건에서의 기체메탄-기체산소 반응물의 연소특성)

  • Kang, Yun Hyeong;Ahn, Hyun Jong;Bae, Chang Han;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.45-52
    • /
    • 2021
  • A hot-firing test was conducted using gaseous-methane and gaseous-oxygen under highly fuel-rich condition as a prior study for the development of a liquid propellant small rocket engine. To compare combustion characteristics for various equivalence ratios, the oxygen flow rate was set to 12 g/s and the methane flow rate was changed according to the equivalence ratio. As a result, it was observed that the steady-state characteristic velocity obtained during the hot-firing test steeply rose in the latter part of each test: the difference between the former and the latter steady value was enhanced overall in proportion to the equivalence ratio. Based on this, the equivalence ratio range depending on the variational characteristics of the characteristic velocity could be divided into three combustion regimes.

Liquid Hydrogen/Liquid Oxygen Rocket Engine Technology (액체수소/액체산소 로켓엔진 기술 검토)

  • Cho, Nam-Kyung;Park, Soon-Young;Kim, Seong-Han;Han, Yeong-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.47-59
    • /
    • 2022
  • Liquid hydrogen/liquid oxygen rocket engines with highest specific impulse have been developed since the 1950s and used until now to maximize the capability of space launch vehicles. Domestic liquid hydrogen infrastructures for the production, transportation and distribution are being expanded at world-class level with the rise of hydrogen economy, which is a great opportunity for the performance enhancement for indigenous space launch vehicles. In this paper, feasibility of applying liquid hydrogen as a propellant is investigated in various aspects. The status of domestic liquid hydrogen infrastructure, the technologies required for liquid hydrogen engines, and operational aspects for safe handling of hydrogen are reviewed. In addition, test facilities for developing hydrogen engines are introduced briefly.

Trend Analysis in Upper Stage Engine Development of Space Launch Vehicles (우주발사체의 상단 엔진 개발 동향 분석)

  • Han, Kyunghwan;Rho, Tae-Seong;Huh, Hwanil;Lee, Hyoung Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.79-95
    • /
    • 2022
  • Since space exploration began in the 1950s, numerous upper stage engines have been developed and used based on various design concepts. In this paper, information of upper stage engines which developed or developing is analysed and their characteristics and performance are summarized. These days, there are many cases of commercial heavy launch vehicles applying upper stage engines using liquid hydrogen with expander cycle which launched recently. Engines operating by Kerosene seem to be close to its theoretical maximum performance based on past experiences. Meanwhile, engines using methane propellant, which has recently become an issue, are also undergoing many developments because of various advantages. Recently, private companies are actively participating in launch vehicle market, and there are many cases in which the government and companies jointly research of next-generation engine.

Current Status of Development Test of 75 tonf Engine System for KSLV-II (한국형발사체 75톤급 엔진 개발 시험 현황)

  • Kim, SeungHan;Kim, SeungRyong;Kim, SungHyuk;Kim, ChaeHyung;Seo, DaeBan;Woo, SeongPil;Yu, ByungIl;So, YoonSeok;Lee, KwangJin;Lee, SeungJae;Lee, JungHo;Lim, JiHyuk;Jeon, JunSoo;Cho, NamKyung;Hwang, ChangHwan;Park, Jea-Young;Han, YeongMin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.99-103
    • /
    • 2017
  • As a development test of the 75-tonf LOx/Kerosene liquid rocket engine for KSLV-II first Stage Engine, hot firing test of 75-tonf engine are performed. The current status of development test on first stage 75-tonf engine system including combustion chamber, turbopump, gas generator, propellant supply system are presented. During the 75tonf engine test campaign, the development of startup sequence of LOx-Kerosene engine system, engine startup using pyrostarter, ignition of gas generator, steady operation and engine shutdown is successfully performed. As a passenger test during engine hot firing tests, Thrust Vector Control system (TVC) of the engine are also evaluated during engine hot firing test. The results of hot firing test of 75-tonf thrust engine system will be used for the design confirmation and performance evaluation of 75 tonf engine system for KSLV-II first Stage.

  • PDF

Construction of High-Pressure Pressurized Liquid Nitrogen Supply Facilities (고압의 가압식 액체질소 공급 설비 구축)

  • Shin, Minkyu;Oh, Jeonghwa;Kim, Seokwon;Ko, Youngsung;Chung, Yonggahp
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.26-32
    • /
    • 2020
  • In this study, a facility was constructed to supply liquid nitrogen to simulate combustion instability in a liquid rocket combustor. The pressurization and supply performances were predicted and verified through different experiments. The liquid nitrogen supply system was composed of a pressurized supply system, and a dome regulator was used to adjust the pressure of the pressurant. A cavitation venturi was used to control the mass flow rate of liquid nitrogen. The condition of liquid nitrogen supply was a mass flow rate of 2.55 kg/s and the venturi inlet pressure was above 100 bar. Based on the initial experiment, it was observed that the predicted amount of the pressurant was not sufficiently supplied and the target pressure was not supplied due to a drop in tank pressure. Through the modification of the established facilities, the target mass flow rate was successfully supplied and the cryogenic liquid nitrogen supply facility was verified.

Evaluation on the Characteristics of Liquefied Natural Gas as a Fuel of Liquid Rocket Engine (액체로켓엔진 연료로서 액화천연가스 특성 평가)

  • Han, Poong-Gyoo;NamKoung, Hyuck-Joon;Kim, Kyoung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.66-73
    • /
    • 2004
  • As a rocket propellent of hydrocarbon fuels, the characteristics of liquefied natural gas was evaluated with the viewpoint of the constituents and content, the cooling performance as a coolant, and characteristic velocity and specific impulse as parameters of the engine performance. Content of methane was a principal factor to determine the characteristics as a rocket propellant and more than 90% of it was needed as a fuel and coolant in the regenerative cooled liquid rocket engine. Some constituents of the liquefied natural gas can be frozen by the pre-cooling of the pipe lines, therefore they can be a factor disturbing the normal working of engine. In case the content of methane is around 90% in the liquefied natural gas, a normalized stoichiometric O/F mixture ratio of 0.75 is suggested for a nominal operation condition to get the maximum specific impulse and characteristic velocity.