DOI QR코드

DOI QR Code

Construction of High-Pressure Pressurized Liquid Nitrogen Supply Facilities

고압의 가압식 액체질소 공급 설비 구축

  • Shin, Minkyu (Department of Aerospace Engineering, Chungnam National University) ;
  • Oh, Jeonghwa (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Seokwon (Department of Aerospace Engineering, Chungnam National University) ;
  • Ko, Youngsung (Department of Aerospace Engineering, Chungnam National University) ;
  • Chung, Yonggahp (Launch Propulsion Control Team, Korea Aerospace Research Institute)
  • 신민규 (충남대학교 항공우주공학과) ;
  • 오정화 (충남대학교 항공우주공학과) ;
  • 김석원 (충남대학교 항공우주공학과) ;
  • 고영성 (충남대학교 항공우주공학과) ;
  • 정용갑 (한국항공우주연구원 발사체추진제어팀)
  • Received : 2020.04.21
  • Accepted : 2020.07.03
  • Published : 2020.10.31

Abstract

In this study, a facility was constructed to supply liquid nitrogen to simulate combustion instability in a liquid rocket combustor. The pressurization and supply performances were predicted and verified through different experiments. The liquid nitrogen supply system was composed of a pressurized supply system, and a dome regulator was used to adjust the pressure of the pressurant. A cavitation venturi was used to control the mass flow rate of liquid nitrogen. The condition of liquid nitrogen supply was a mass flow rate of 2.55 kg/s and the venturi inlet pressure was above 100 bar. Based on the initial experiment, it was observed that the predicted amount of the pressurant was not sufficiently supplied and the target pressure was not supplied due to a drop in tank pressure. Through the modification of the established facilities, the target mass flow rate was successfully supplied and the cryogenic liquid nitrogen supply facility was verified.

본 연구에서는 액체로켓 연소기의 연소 불안정 모사를 위해 극저온 유체인 액체질소를 공급하는 설비를 구축하였다. 가압 및 공급 성능을 예측하였으며 실험을 통하여 검증하였다. 액체질소 공급 시스템은 가압식 공급 시스템으로 구성하였으며, 가압제 압력 조정은 돔 레귤레이터를 사용하였다. 액체질소 공급 유량 제어는 캐비테이션 벤추리를 사용하였으며, 액체 질소 공급 조건은 초당 유량 2.55 kg/s, 벤추리 입구 압력은 100 bar 이상이다. 초기 실험 결과 예측된 가압제의 양이 충분히 공급되지 못하여, 탱크압력 강하가 발생해 목표 유량을 공급하지 못하였다. 구축된 설비의 변경 및 보완을 통하여, 최종적으로 목표 유량 공급에 성공하여 극저온 액체질소 공급 설비를 검증하였다.

Keywords

References

  1. S. S. Park, M. K. Shin, J. H. Oh, S. Jin, Y. S. Cho, Y. S. Ko, "Preliminary Combustion Test of a Non-cylindrical Combustor at Low Pressure Condition", The Korean Society of Propulsion Engineers, Spring conference, pp.731-734, 2019
  2. O. S. Kwon, B. H. Kim, G. S. Kil, S. Y. Han, "Calculation of pressurization efficiency of cryogenic propellant tank", Aerospace Engineering and Technology 12(2), pp. 83-90, Nov. 2013
  3. O. S. Kwon, B. H. Kim, I. H. Cho, Y. S. Ko, "Required Pressurant Mass for Cryogenic Propellant Tank with Pressurant Temperature Variation", Journal of the Korean Aeronautical & Space Sciences 38(12), pp. 1202-1208, Dec. 2010 https://doi.org/10.5139/JKSAS.2010.38.12.1202
  4. Y. G. Chung. O. S. Kim, N. K. Cho, S. Y. Han, I. H. Cho, "investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System", Journal of the Korean Society of Propulsion Engineers 11(2), pp. 54-61, April 2007
  5. Y. S. Jung, J. W. Kim, K. K. Park, S. H. Beak, K. J. Cho, "Modeling of Pressurization System for Cryogenic Propellant Tank and Comparison with the Results of Test", The Korean Society of Propulsion Engineers, pp. 1059-1061, Dec. 2016
  6. 홍용식, 우주추진공학, 청문각, pp.56-59, 1990
  7. D. K. Huzel, D. H. Huang, "Modern Engineering for Design of Liquid-Propellant Rocket Engines", pp.136-137, 1992
  8. Liquid Rocket Lines, Bellows, Flexible hoses, and Filters, NASA SP-8123, 1977
  9. S. Greenfield, "Dilution of Cryogenic Liquid Rocket Propellants During Pressurized Transfer", K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, New York, Vol 3, 1960