• Title/Summary/Keyword: Problem structure

Search Result 5,501, Processing Time 0.033 seconds

Analysis of Effect of Learning to Solve Word Problems through a Structure-Representation Instruction. (문장제 해결에서 구조-표현을 강조한 학습의 교수학적 효과 분석)

  • 이종희;김부미
    • School Mathematics
    • /
    • v.5 no.3
    • /
    • pp.361-384
    • /
    • 2003
  • The purpose of this study was to investigate students' problem solving process based on the model of IDEAL if they learn to solve word problems of simultaneous linear equations through structure-representation instruction. The problem solving model of IDEAL is followed by stages; identifying problems(I), defining problems(D), exploring alternative approaches(E), acting on a plan(A). 160 second-grade students of middle schools participated in a study was classified into those of (a) a control group receiving no explicit instruction of structure-representation in word problem solving, and (b) a group receiving structure-representation instruction followed by IDEAL. As a result of this study, a structure-representation instruction improved word-problem solving performance and the students taught by the structure-representation approach discriminate more sharply equivalent problem, isomorphic problem and similar problem than the students of a control group. Also, students of the group instructed by structure-representation approach have less errors in understanding contexts and using data, in transferring mathematical symbol from internal learning relation of word problem and in setting up an equation than the students of a control group. Especially, this study shows that the model of direct transformation and the model of structure-schema in students' problem solving process of I and D stages.

  • PDF

Object and Structure in Elementary School Mathematics: Horizontal and Vertical Diversity of Structure (초등수학에서 대상과 구조: 구조의 횡적 다양성과 종적 다양성)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.3
    • /
    • pp.321-336
    • /
    • 2012
  • Cognitive subject imposes structures on an object to shape it into a structured thing. Structures that the subject imposes on an object in a given problem context can be diverse horizontally and vertically. In view of the horizontal diversity of structure, problem-solving activities focusing on various structures may enrich the present problem-solving education which emphasizes applying and comparing a couple of problem-solving strategies. Finding an algebraic formula for a figural pattern should be regarded as a new starting point of searching for more various structures. In view of the vertical diversity of structure, it should be aware that students may see different structures from the structure that their teacher expect them to see. The vertical diversity of structure enables us to provide students with experience of progress.

  • PDF

A Case Study on Students' Problem Solving in process of Problem Posing for Equation at the Middle School Level (방정식의 문제 만들기 활동에서 문제구조를 중심으로 문제해결에 관한 연구)

  • ChoiKoh, Sang-Sook;Jeon, Sung-Hoon
    • Communications of Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.109-128
    • /
    • 2009
  • This study aimed to investigate students' learning process by examining their perception process of problem structure and mathematization, and further to suggest an effective teaching and learning of mathematics to improve students' problem-solving ability. Using the qualitative research method, the researcher observed the collaborative learning of two middle school students by providing problem-posing activities of five lessons and interviewed the students during their performance. The results indicated the student with a high achievement tended to make a similar problem and a new problem where a problem structure should be found first, had a flexible approach in changing its variability of the problem because he had advanced algebraic thinking of quantitative reasoning and reversibility in dealing with making a formula, which related to developing creativity. In conclusion, it was observed that the process of problem posing required accurate understanding of problem structures, providing students an opportunity to understand elements and principles of the problem to find the relation of the problem. Teachers may use a strategy of simplifying external structure of the problem and analyzing algebraical thinking necessary to internal structure according to students' level so that students are able to recognize the problem.

  • PDF

An Analysis of Geometrical Differentiated Teaching and Learning Materials Using Inner Structure of Mathematics Problems (수학 문제의 내적구조를 활용한 기하 영역의 수준별 교수-학습 자료의 분석 연구)

  • Han, In-Ki
    • Communications of Mathematical Education
    • /
    • v.23 no.2
    • /
    • pp.175-196
    • /
    • 2009
  • In this paper we analyze Ziv's geometrical differentiated teaching and learning materials using inner structure of mathematics problems. In order to analyze inner structure of mathematics problems we in detail describe problem solving process, and extract main frame from problem solving process. We represent inner structure of mathematics problems as tree including induced relations. As a result, we characterize low-level problems and middle-level problems, and find some differences between low-level problems and middle-level problems.

  • PDF

A Study on the Formulation of the Interaction Problem between Upper Structure and the Ground under Consolidation (上部 構造와 下部 壓密地盤 間 상호작용 문제의 정식화에 대한 연구)

  • Lee, Oe-Duck
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.51-61
    • /
    • 1999
  • When a structure is built on the ground under consolidation, the instant corresponding contact pressure which the upper structure exerts on the ground is established. But, as the consolidation of the ground proceeds, the contact pressure is changed because of the flexural rigidity of the upper structure. This varied contact pressure exerts influence on the consolidation behavior of the ground. And, this varied consolidation behavior exerts on the contact pressure in retum. This kind of interaction between the upper struture and the olwer ground under consolidation contimues till all the consolidation process in finished. So this problem cannot be defined as a linear problem. In this paper an approximation method which can analyse this non-linear interaction problem is proposed by the FEM.

  • PDF

Development and Application of Problem Bank of Problem Solving Programming Using Online Judge System in Data Structure Education (자료구조 수업에서 온라인 자동평가용 문제해결 프로그래밍 문제은행 개발 및 적용)

  • Kim, Seong-Sik;Oh, So-Hee;Jeong, Sang-Su
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.4
    • /
    • pp.11-20
    • /
    • 2018
  • This study is to propose a problem bank of problem solving programming using Online Judge System as one of the ways to motivate learners and increase for immersion to students who take Data Structure lecture that is the basis of problem solving ability using information science. In order to do this, we developed a question bank for each major topic in the Data Structure, by developing 70 problem solving programming problems suitable for the main topics of the Data Structure. By mounting it on an Online Judge System and applying to actual classes, and by analyzing the motivation for learning and the degree of immersion according to the result after the application of the lesson, we propose a teaching-learning contents and usage for problem solving programming and Data Structure classes at the teacher training university which give motivation for learning and immerse in problem solving programming.

Self-similarity in the equation of motion of a ship

  • Lee, Gyeong Joong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.333-346
    • /
    • 2014
  • If we want to analyze the motion of a body in fluid, we should use rigid-body dynamics and fluid dynamics together. Even if the rigid-body and fluid dynamics are each self-consistent, there arises the problem of self-similar structure in the equation of motion when the two dynamics are coupled with each other. When the added mass is greater than the mass of a body, the calculated motion is divergent because of its self-similar structure. This study showed that the above problem is an inherent problem. This problem of self-similar structure may arise in the equation of motion in which the fluid dynamic forces are treated as external forces on the right hand side of the equation. A reconfiguration technique for the equation of motion using pseudo-added-mass was proposed to resolve the self-similar structure problem; specifically for the case when the fluid force is expressed by integration of the fluid pressure.

On eigenvalue problem of bar structures with stochastic spatial stiffness variations

  • Rozycki, B.;Zembaty, Z.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.541-558
    • /
    • 2011
  • This paper presents an analysis of stochastic eigenvalue problem of plane bar structures. Particular attention is paid to the effect of spatial variations of the flexural properties of the structure on the first four eigenvalues. The problem of spatial variations of the structure properties and their effect on the first four eigenvalues is analyzed in detail. The stochastic eigenvalue problem was solved independently by stochastic finite element method (stochastic FEM) and Monte Carlo techniques. It was revealed that the spatial variations of the structural parameters along the structure may substantially affect the eigenvalues with quite wide gap between the two extreme cases of zero- and full-correlation. This is particularly evident for the multi-segment structures for which technology may dictate natural bounds of zero- and full-correlation cases.

Optimization of Gable Frame Using the Modified Genetic Algorithm (개선된 유전자 알고리즘을 이용한 산형 골조의 최적화)

  • Lee, Hong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.4 s.10
    • /
    • pp.59-67
    • /
    • 2003
  • Genetic algorithm is one of the best ways to solve a discrete variable optimization problem. Genetic algorithm tends to thrive in an environment in which the search space is uneven and has many hills and valleys. In this study, genetic algorithm is used for solving the design problem of gable structure. The design problem of frame structure has some special features(complicate design space, many nonlinear constrants, integer design variables, termination conditions, special information for frame members, etc.), and these features must be considered in the formulation of optimization problem and the application of genetic algorithm. So, 'FRAME operator', a new genetic operator for solving the frame optimization problem effectively, is developed and applied to the design problem of gable structure. This example shows that the new opreator has the possibility to be an effective frame design operator and genetic algorithm is suitable for the frame optimization problem.

  • PDF

The Content Structure of the Navigation Course Using Learning Hierarchy (학습위계에 의한 항해교과의 내용 구조화)

  • Yoon, Hyun-Sang
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.6 no.2
    • /
    • pp.198-216
    • /
    • 1994
  • The problem of promoting instructional effect using reorganizing the content of textbook is one of the major concerns of many education theorists and teachers. The results of many researches about above problem reveal that reorganizing the content of textbook promotes the ability of recall and problem solving of learners. The content structure of current navigation textbook revealed a categorical structure as its basic framework, though it seems to be a poor one. A categorical structure is known as providing an inferior information processing mechanism for learners than a learning hierarchy content structure is. Furthermore current content structure hasn't given any considerations to navigation in practice, spatial contexts and sequential events of ships from a harbor to another harbor. The learning hierarchy content structure has an advantage of giving learners more systematic and stronger knowledge networks than a categorical structure.

  • PDF