• Title/Summary/Keyword: Probiotic activity

Search Result 330, Processing Time 0.024 seconds

Isolation, Characterization, and Comparative Genomics of the Novel Potential Probiotics from Canine Feces

  • Ngamlak Foongsawat;Sirinthorn Sunthornthummas;Kwannan Nantavisai;Komwit Surachat;Achariya Rangsiruji;Siriruk Sarawaneeyaruk;Kedvadee Insian;Sirapan Sukontasing;Nuttika Suwannasai;Onanong Pringsulaka
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.685-702
    • /
    • 2023
  • Lactic acid bacteria (LAB) are commonly used as probiotics; however, not all LAB strains have the same beneficial effects. To successfully use LAB as probiotics in canines, LAB species should originate from the canine intestinal tract as they display host specificity. The objective of this study was to investigate the phenotypic and genomic traits of potential probiotic LAB isolated from canine fecal samples. Twenty LAB samples were evaluated for their potential probiotic characteristics including resistance to low pH, bile salts, hydrophobicity, auto-aggregation, co-aggregation, adhesion to epithelia or mucosa, and production of inhibitory compounds. Additionally, we evaluated their safety and other beneficial effects on canine health, such as DPPH free radical scavenging, and β-galactosidase. Four strains demonstrated potential probiotic characteristics and were selected: Enterococcus hirae Pom4, Limosilactobacillus fermentum Pom5, Pediococcus pentosaceus Chi8, and Ligilactobacillus animalis FB2. Safety evaluations showed that all strains lacked hemolytic activity, could not produce biogenic amines, and did not carry any pathogenic genes. In addition, L. fermentum Pom5 and P. pentosaceus Chi8 displayed susceptibility to all antibiotics and concordant with the absence of antibiotic resistance genes. Based on their phenotypic and genomic characteristics, L. fermentum Pom5 and P. pentosaceus Chi8 were identified as potential probiotic candidates for canines.

Promotion of Bone Nodule Formation and Inhibition of Growth and Invasion of Streptococcus mutans by Weissella kimchii PL9001

  • Lee Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.531-537
    • /
    • 2006
  • Lactic acid-producing bacteria (LABs) are known to have various beneficial properties for health. However, they are generally considered to have an adverse effect on teeth, since they produce acid. Nonetheless, milk and cheese containing specific LAB strains were recently found to have an inhibitory effect on dental caries in children, with an inhibitory activity towards the growth of Streptococcus mutans suggested as the responsible mechanism. Accordingly, the current study selected a probiotic candidate for oral health and studied its inhibitory mechanism against dental caries. Twenty-two LAB species belonging to eleven genuses were screened for promoting bone nodule formation using direct microscopic examination. Only one isolate, Weissella kimchii strain PL9001, increased the bone nodule formation significantly. The addition of W. kimchii strain PL9001 to bone cells prepared from mouse calvaria increased the bone nodule formation, calcium accumulation, and activity of alkaline phosphatase (the osteoblastic marker). Moreover, W. kimchii strain PL9001 inhibited the invasion of Streptococcus mutans into bone cells, and an organic extract of the culture supernatant of W. kimchii strain PL9001 inhibited the growth of Strep. mutans. Therefore, the results suggest that W. kimchii strain PL9001 can be used as a preventive measure against dental caries. This is the first time that a LAB has been shown to promote bone nodule formation and prevent the invasion of Strep. mutans into bone cells.

Heat-Killed Lactobacillus plantarum KCTC 13314BP Enhances Phagocytic Activity and Immunomodulatory Effects via Activation of MAPK and STAT3 Pathways

  • Jeong, Minju;Kim, Jae Hwan;Yang, Hee;Kang, Shin Dal;Song, Seongbong;Lee, Deukbuhm;Lee, Ji Su;Park, Jung Han Yoon;Byun, Sanguine;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1248-1254
    • /
    • 2019
  • Identification of novel probiotic strains is of great interest in the field of functional foods. Specific strains of heat-killed bacteria have been reported to exert immunomodulatory effects. Herein, we investigated the immune-stimulatory function of heat-killed Lactobacillus plantarum KCTC 13314BP (LBP). Treatment with LBP significantly increased the production of $TNF-{\alpha}$ and IL-6 by macrophages. More importantly, LBP was able to enhance the phagocytic activity of macrophages against bacterial particles. Activation of p38, JNK, ERK, $NF-{\kappa}B$, and STAT3 was involved in the immunomodulatory function of LBP. LBP treatment significantly increased production of $TNF-{\alpha}$ by bone marrow-derived macrophages and splenocytes, further confirming the immunostimulatory effect of LBP in primary immune cells. Interestingly, the immunomodulatory effects of LBP were much stronger than those of Lactobacillus rhamnosus GG, a well-known probiotic strain. These results indicate that LBP can be a promising immune-enhancing functional food agent.

Comparison of Probiotic Characteristics in Lactobacillus acidophilus Strains

  • Oh, Se-Jong;Chai, Chang-Hun;Kim, Sae-Hun;Kim, Young-Jun;Kim, Hyung-S.
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.05a
    • /
    • pp.349-352
    • /
    • 2004
  • Twelve strains of Lactobacillus acidophilus isolated from feces of human or animal sources were tested for probiotic properties such as cholesterol assimilation, bile and acid tolerances, and CLA production. Although the cultures showed some variation with respect to each test, the 12 strains could be classified into 3 groups based on their ability to assimilate cholesterol. The cholesterol assimilation showed positive correlation with bile tolerance and negative correlation with acid tolerance. The cholesterol assimilation of L. acidophilus strains may not be related to the deconjugation activity, but may in fact be attributed to its bile tolerance. CLA production by lactic acid bacteria (LAB) exhibited a wide variation that ranged from 2.69 to 7.64 mg/g fat. CLA production of Bifidobacterium longum ATCC 15707 was the highest among the LAB tested, but there was no evidence for differences in CLA production between genus and species.

  • PDF

Complete genome sequence of Paenibacillus konkukensis sp. nov. SK3146 as a potential probiotic strain

  • Jung, Hae-In;Park, Sungkwon;Niu, Kai-Min;Lee, Sang-Won;Kothari, Damini;Yi, Kwon Jung;Kim, Soo-Ki
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.666-670
    • /
    • 2021
  • Paenibacillus konkukensis sp. nov., SK3146 is a novel strain isolated from a pig feed. Here, we present complete genome sequence of SK3146. The genome consists of a single circular genome measuring 7,968,964 bp in size with an average guanine + cytosine (G+C) content of 53.4%. Genomic annotation revealed that the strain encodes 151 proteins related to hydrolases (EC3), which was higher than those in Bacillus subtilis and Escherichia coli. Diverse kinds of hydrolases including galactosidase, glucosidase, cellulase, lipase, xylanase, and protease were found in the genome of SK3146, coupled with one bacteriocin encoding gene. The complete genome sequence of P. konkukensis SK3146 indicates the immense probiotic potential of the strain with nutrient digestibility and antimicrobial activity functions.

Probiotic Potential of Pediococcus pentosaceus BCNU 9070 (프로바이오틱 Pediococcus pentosaceus BCNU 9070 균주)

  • Shin, Hwa-Jin;Choi, Hye-Jung;Kim, Dong-Wan;Ahn, Cheol-Soo;Lee, Young-Geun;Jeong, Young-Kee;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1194-1200
    • /
    • 2012
  • Lactic acid bacteria are generally recognized as beneficial probiotic organisms. Recent studies revealed that the potential of probiotic strains was essentially dependent on the bacterial-binding and adhesion capabilities to gut epithelial cells and the hydrophobicity of the cell surface. In this study, we screened some indigenous lactic acid bacteria from Kimchi and selected one lactic acid bacterium as a potential probiotic based on its cell surface hydrophobicity. Analysis of the 16S rRNA gene sequences of probiotic isolates indicated that the selected isolate (BCNU 9070 strain) was a member of Pediococcus pentosaceus. P. pentosaceus BCNU 9070 showed resistance to bile acids and acidic pH. The P. pentosaceus BCNU 9070 strain also inhibited the cell growth of six food-borne pathogens including Listeria monocytogenes and Shigella sonnei. In addition, the P. pentosaceus BCNU 9070 strain expressed bile salt hydrolase activity and showed an ability to assimilate cholesterol in vitro. On the basis of these results, P. pentosaceus BCNU 9070 is considered to have probiotic potential for applications in functional foodstuffs.

Bifidobacterium adolescentis P2P3, a Human Gut Bacterium Having Strong Non-Gelatinized Resistant Starch-Degrading Activity

  • Jung, Dong-Hyun;Kim, Ga-Young;Kim, In-Young;Seo, Dong-Ho;Nam, Young-Do;Kang, Hee;Song, Youngju;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1904-1915
    • /
    • 2019
  • Resistant starch (RS) is metabolized by gut microbiota and involved in the production of short-chain fatty acids, which are related to a variety of physiological and health effects. Therefore, the availability of RS as a prebiotic is a topic of interest, and research on gut bacteria that can decompose RS is also important. The objectives in this study were 1) to isolate a human gut bacterium having strong degradation activity on non-gelatinized RS, 2) to characterize its RS-degrading characteristics, and 3) to investigate its probiotic effects, including a growth stimulation effect on other gut bacteria and an immunomodulatory effect. Bifidobacterium adolescentis P2P3 showing very strong RS granule utilization activity was isolated. It can attach to RS granules and form them into clusters. It also utilizes high-amylose corn starch granules up to 63.3%, and efficiently decomposes other various types of commercial RS without gelatinization. In a coculture experiment, Bacteroides thetaiotaomicron ATCC 29148, isolated from human feces, was able to grow using carbon sources generated from RS granules by B. adolescentis P2P3. In addition, B. adolescentis P2P3 demonstrated the ability to stimulate secretion of Th1 type cytokines from mouse macrophages in vitro that was not shown in other B. adolescentis. These results suggested that B. adolescentis P2P3 is a useful probiotic candidate, having immunomodulatory activity as well as the ability to feed other gut bacteria using RS as a prebiotic.

Screening of Lactic Acid Bacteria as Starter Culture for Making Fermented Sausage (발효 소시지 제조를 위한 기능성 유산균의 선발)

  • Han, Soo-Min;Kim, Young-Joo;Lee, Hong-Chul;Chin, Koo-Bok;Oh, Se-Jong
    • Food Science of Animal Resources
    • /
    • v.26 no.4
    • /
    • pp.511-516
    • /
    • 2006
  • The objectives of this study was to compare the probiotic characteristics of lactic acid bacteria (LAB) for their ability to assimilate cholesterol, production of bacteriocin, inhibition of angiotensin I-converting enzyme (ACE), and viability under artificial gastrointestinal fluids. Among tested lactic acid bacteria, L167 strain exhibited the highest ACE inhibitory activity (58.75%). The production of ACE inhibitory peptide derived from fermented milk by L167 strain started at the beginning of stationary phase with maximum activity occurring late of the stationary phase. The highest ACE inhibitory activity was observed at 20 h in 10% skim milk medium. L155 strain exhibited cholesterol assimilation activity compared with probiotic strains such as Lactobacillus acidophilus ATCC 43121. With addition of bacteriocin culture, viable cells of Staphylococcus aureus in fermented sausage were slightly decreased during storage. Among selected strains of LAB, 3 strains weve identified as L. plantarum (L155, L165, L167), and two strains were identified as Pediococcus damnosus (L12) and L. paracasei ssp. paracasei (P113) by use of API carbohydrate fermentation pattern and physiological tests.

Probiotic Potential of Indigenous Bacillus sp. BCNU 9028 Isolated from Meju (메주로부터 분리한 토착 Bacillus sp. BCNU 9028의 프로바이오틱스로서 이용 가능성)

  • Shin, Hwa-Jin;Bang, Ji-Hun;Choi, Hye-Jung;Kim, Dong-Wan;Ahn, Cheol-Soo;Jeong, Young-Kee;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.605-612
    • /
    • 2012
  • Spore-forming bacteria are being used as probiotic supplements for human and animal use, due to their low pH stability and ability to survive the gastric barrier. In this study, the BCNU 9028 strain was screened from meju, a Korean fermented soybean food starter. Biochemical and physiological characteristics, as well as 16S rDNA sequence analyses, indicate that this strain belongs to the genus $Bacillus$. $Bacillus$ sp. BCNU 9028 showed a 92% survivability at pH 2.5 and could also withstand 0.3% ox bile. Furthermore, it was postulated that $Bacillus$ sp. BCNU 9028 could prevent biofilm formation and adherence of food-borne pathogens such as $Listeria$ $monocytogenes$, $S.$ $aureus$ and $E.$ $coli$ on the basis of its autoaggregation and coaggregation capacity with food-borne pathogens. It was shown that BCNU 9028 has good abilities to adhere to the intestinal tract from its hydrophobic character (63.3%). The $Bacillus$ sp. BCNU 9028 strain especially elicited antibacterial activity against both Gram-positive and -negative pathogens. These findings suggested that the $Bacillus$ sp. BCNU 9028 strain could be used as a potential probiotic.

Probiotic Properties of Lactic Acid Bacteria Isolated Traditional Fermented Foods (전통발효식품 유래 유산균의 프로바이오틱스 특성 연구)

  • Kim, Eun-Ji;Jo, Seung-Wha;Kim, Jin-Kyeong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.697-704
    • /
    • 2019
  • This study performed to investigate the probiotic properties of lactic acid bacteria 200 strains isolated from traditional fermented foods. Based on being higher tolerance to bile salts and showing higher acid resistance, 4 LAB Strains were selected in the screening experiment; Lactobacillus plantarum SRCM 102224, Lb. plantarum SRCM102227, Lb. paracasei SRCM102329, Lb. paracasei SRCM102343. Antibacterial activity against various pathogens, acid and bile salt tolerance, hemolytic phenomenon, cell surface hydrophobicity, and antibiotic resistance were examined. Among the tested strains, SRCM 102343 (95.9%) was highly observed hydrophobicity compared to Lb. rhmanosus GG (13.4%) as control. In this study, the in vitro adhesion properties of 4 strains of LAB was investigated using human intestinal caco-2 cell cultures. SRCM102329 and SRCM102343showed higher adherence to caco-2 cells than Lb. rhamnosus GG. The antibacterial activities of 4 strains LAB were investigated. the 3 strains showing strongly antimicrobial activity against Escherichia coli ATCC10798, Staphylococcus aureus KCCM11593, Listeria invanovii KCTC3444, Bacillus cereus ATCC11778 and S. enterica serovar. Typhi KCTC1926. These results suggest that selected strains have good probiotic potential for application in functional foods.