Fig. 1. Molecular Phylogenetic analysis by Maximum Likelihood method. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model [1]. The tree with the highest log likelihood (-3382.85) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 14 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 1188 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [17].
Fig 2. Hydrophobicity of selected 4 strains and LGG.
Table 1. pH resistance of selected 4 strains at various pH from 6.5 to 2.0
Table 2. Bile tolerance of selected 4 strains at various bile salt from 0 to 1.0%
Table 3. Adhesion ability to Caco-2 cells of selected 4 strains and LGG
Table 4. Antimicrobial activities of selected 4 strains against food pathogens
Table 5. Antibiotic susceptibility of selected 4 strains
References
- Adesokan, I. A., Odetoyinbo, B. B. and Olubamiwa, A. O. 2008. Biopreservative activity of lactic acid bacteria on suya produced from poultry meat. Afr. J. Biotechnol. 7, 3799-3803.
- Bar-Ness, R., Avrabamy, N., Matsuyama, T. and Rosenberg, M. 1988. Increased cell surface hydrophobicity of a Serraia marcescens NS 38 mutant lacking wetting activity. J. Bacteriol. 170, 4361-436. https://doi.org/10.1128/JB.170.9.4361-4364.1988
- Chon, J. W., Kim, D. H., Kim, H. S., Kim, H. S., Hwang, D. G., Song, K. Y., Yim, J. H., Choi, D. S., Lim, J. S. and Seo, K. H. 2014. Effect of probiotics on risk factors for human disease: A review. Kor. J. Dairy Sci. Technol. 32, 17-29.
- Clinical and Laboratory Standards Institute. 2006. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria: Approved Guideline M45-A. Clinical and Laboratory Standards Institute, 26.
- Diep, D. B., Godager, L., Brede, D. and Nes, I. F. 2006. Data minig and characterization of a novel pediocin-like bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745. Microbiology 152, 1649-1659. https://doi.org/10.1099/mic.0.28794-0
- Donohue, D. C. and Salminen, S. 1996. Safety of probiotic bacteria. Asia Pac. J. Clin. Nutr. 5, 25-28.
- Doyle, R. J. and Rosenberg, M. 1995. Measurement of microbial adhesion to hydrophobic substrata. Methods Enzymol. 253, 532-550.
- Dunne, C. L., O'Mahoney, L., Murphy, L., Thornton, D., Morrissey, D., O'Halloran, S., Feeney, M., Flynn, S., Fitzgerald, G., Daly, C., Kiely, B., O'Sullivan, G. C., Shanahan, F. and Collins, J. K. 2001. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am. J. Clin. Nutr. 73, 386S-392S. https://doi.org/10.1093/ajcn/73.2.386s
- Eor, J, Y,, Park, M. H. and Kim, S. H. 2015. Prevention of obesity and type 2 diabetes by using probiotics. J. Milk Sci. Biotechnol. 33, 231-235.
- Fernadez, M. F., Boris, S. and Barbes, C. 2003. Probiotic properties of human Lactobacilli strains to be used in the gastrointestinal tract. J. Appl. Microbiol. 94, 449-455. https://doi.org/10.1046/j.1365-2672.2003.01850.x
- Gilliland, S. E. and Speck, M. L. 1977. Deconjugation of bile acids by intestinal Lactobacilli. Appl. Environ. Microbiol. 33, 15-18. https://doi.org/10.1128/AEM.33.1.15-18.1977
- Gueimonde, M. and Salminen, S. 2006. New methods for selecting and evaluating probiotics. Dig. Liver Dis. 38, S242-S247. https://doi.org/10.1016/S1590-8658(07)60003-6
- Hazen, K. C., Lay, J. G., Hazen, B. W., Fu, R. C. and Murthy, S. 1990. Partial biochemical charaterization of cell surface hydrophobicity and hydrophilicity of Candida albicans. Infect. Immun. 58, 3469-3476. https://doi.org/10.1128/IAI.58.11.3469-3476.1990
- Jonganurakkun, B., Wang, Q., Xu, S. H., Tada, Y., Minamida, K., Yasokawa, D., Sugi, M., Hara, H. and Asano, K. 2008. Pediococcus pentosaceus NB-17 for probiotic use. J. Biosci. Bioeng. 106, 69-73. https://doi.org/10.1263/jbb.106.69
- Kim, Y. M., Park, U. K., Mok, J. S. and Chang, D. S. 1995. Physiological characteristics of Listeria monocytogenes YM-7. Kor. Fish Aquatic Sci. 28, 443-450.
- Kos, B., Suskoviae, J., Vukoviae, S., Simpraga, M., Frece, J. and Matosiae, S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 94, 981-987. https://doi.org/10.1046/j.1365-2672.2003.01915.x
- Lim, K. S. and Huh, C. S. 2006. Adhesion of bifidobacteria to Caco-2 cells and in relation to cell surface hydrophobicity. Kor. J. Food Sci. Anim. Resour. 26, 497-502.
- Maria, G. V. P., Franz, C . M., Schillinger, U. and Holzapfel, W. H. 2006. Lactobacillus spp. with i n vitro probiotic properties from human faeces and traditional fermented products. Int. J. Food Microbiol. 109, 205-214. https://doi.org/10.1016/j.ijfoodmicro.2006.01.029
- Mathara, J. M., Schillinger, U., Guigas, C., Franz, C., Kutima, P. M. and Mbugua, S. K., et al. 2008. Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int. J. Food Microbiol. 126, 57-64. https://doi.org/10.1016/j.ijfoodmicro.2008.04.027
- Mishra, V. and Prasad, D. N. 2005. Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int. J. Food Microbiol. 103, 109-115. https://doi.org/10.1016/j.ijfoodmicro.2004.10.047
- Obadina, A. O., Oyewole, O. B., Sanni, L. O. and Tomlins, K. I. 2006. Bio-preservative activities of Lactobacillus plantarum strains in fermenting Casssava 'fufu'. Afr. J. Biotechnol. 5, 620-623.
- Ouwehand, A. C., Salminen, S. and Isolauri, E. 2002. Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82, 279-289. https://doi.org/10.1023/A:1020620607611
- Puttalingamma, V., Begum, K. and Bawa, A. S. 2006. Anti microbial peptides-new weapons against enteric pathogens. Pak. J. Nutr. 5, 432-435. https://doi.org/10.3923/pjn.2006.432.435
- Radulovic, Z., Miocinovic, J., Mirkovic, N., Mirkovic, M., Paunovic, D., Ivanovic, M. and Seratlic, S. 2017. Survival of spray dried and free-cells of potential probiotic Lacto bacillus plantarum 564 in soft goat cheese. Anim. Sci. J. 88, 1849-1854. https://doi.org/10.1111/asj.12802
- Ramos, C. L., Thorsen, L., Schwan, R. F. and Jespersen, L. 2013. Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol. 36, 22-29. https://doi.org/10.1016/j.fm.2013.03.010
- Rim, E. J., Monia, E. B., Pilar, C. M., Karola, B., Inmaculada, C. F. N., Jorge, B. V. and Balkiss, B. Z. 2015. In vitro probiotic profiling of novel Enterococcus faecium and Leuconostoc mesenteroides from Tunisian freshwater fishes. Can. J. Microbiol. 62, 60-71. https://doi.org/10.1139/cjm-2015-0481
- Sahadeva, R. P. K., Leong, S. F., Chua, K. H., Tan, C. H., Chan, H. Y., Tong, E. V., Wong, S. Y. W. and Chan, H. K. 2011. Survival of commercial probiotic strains to pH and bile. Int. Food Res. J. 18, 1515-1522.
- Sybesma, W., Hugenholtz, J., de Vos, W. M. and Smid, E. J. 2006 Safe use of genetically modified lactic acid bacteria in food, bridging the gap between consumers, green groups, and industry. Electron. J. Biotechnol. 9, 424-448.
- Tagg, J. R., Dajani, A. S. and Wannamake, L. W. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40, 722-756. https://doi.org/10.1128/MMBR.40.3.722-756.1976
- Tulumoglu, S., Yuksekdag, Z. N., Beyatli, Y., Simek, O., Cinar, B. and Yasar, E. 2013. Probiotic properties of Lactobacilli species isolated from children's feces. Anaerobe 24, 36-42. https://doi.org/10.1016/j.anaerobe.2013.09.006
- Yang, H. J., Jung, S. J., Jung, S. Y., Ryu, M. S. and Jung, D. Y. 2018. Isolation of biogenic amine non-producing Lactobacillus brevis SBB07 and its potential probiotic properties. J. Life Sci. 28, 68-77. https://doi.org/10.5352/JLS.2018.28.1.68
- Wasilewski, A., Zielinska, M., Storr, M. and Fichna, J. 2015. Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1674-1682. https://doi.org/10.1097/MIB.0000000000000364