DOI QR코드

DOI QR Code

Probiotic Properties of Lactic Acid Bacteria Isolated Traditional Fermented Foods

전통발효식품 유래 유산균의 프로바이오틱스 특성 연구

  • Kim, Eun-Ji (Microbial Institute for Fermentation Industry(MIFI)) ;
  • Jo, Seung-Wha (Microbial Institute for Fermentation Industry(MIFI)) ;
  • Kim, Jin-Kyeong (Microbial Institute for Fermentation Industry(MIFI)) ;
  • Jeong, Do-Youn (Microbial Institute for Fermentation Industry(MIFI))
  • 김은지 (재단법인 발효미생물산업진흥원) ;
  • 조승화 (재단법인 발효미생물산업진흥원) ;
  • 김진경 (재단법인 발효미생물산업진흥원) ;
  • 정도연 (재단법인 발효미생물산업진흥원)
  • Received : 2018.12.20
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

This study performed to investigate the probiotic properties of lactic acid bacteria 200 strains isolated from traditional fermented foods. Based on being higher tolerance to bile salts and showing higher acid resistance, 4 LAB Strains were selected in the screening experiment; Lactobacillus plantarum SRCM 102224, Lb. plantarum SRCM102227, Lb. paracasei SRCM102329, Lb. paracasei SRCM102343. Antibacterial activity against various pathogens, acid and bile salt tolerance, hemolytic phenomenon, cell surface hydrophobicity, and antibiotic resistance were examined. Among the tested strains, SRCM 102343 (95.9%) was highly observed hydrophobicity compared to Lb. rhmanosus GG (13.4%) as control. In this study, the in vitro adhesion properties of 4 strains of LAB was investigated using human intestinal caco-2 cell cultures. SRCM102329 and SRCM102343showed higher adherence to caco-2 cells than Lb. rhamnosus GG. The antibacterial activities of 4 strains LAB were investigated. the 3 strains showing strongly antimicrobial activity against Escherichia coli ATCC10798, Staphylococcus aureus KCCM11593, Listeria invanovii KCTC3444, Bacillus cereus ATCC11778 and S. enterica serovar. Typhi KCTC1926. These results suggest that selected strains have good probiotic potential for application in functional foods.

본 연구에서는 전통발효식품에서 분리한 유산균 200여종에 대하여 프로바이오틱 특성을 확인하였다. 내담즙성 및 내산성이 높게 측정된 유산균 4종을 선발하였다. 선발된 유산균은 Lb. plantarum SRCM102224, Lb. plantarum SRCM102227, Lb. paracasei SRCM102329, Lb. paracasei SRCM102343이다. 항균활성, 내산성, 내담즙성, 용혈성, 세포표면 소수성, 장내 세포 부착성, 항생제 내성을 조사하였다. 선발된 유산균 4종 중 SRCM102343은 세포표면 소수성이 95.9%로 대조구 Lb. rhamnosus GG는 13.4%보다 높게 측정되었다. 4종의 유산균의 장내상피세포 caco-2에 대한 부착능을 조사하였다. 그 결과, SRCM102343와 SRCM102329의 Lb. rhamnosus GG보다 부착율이 높았다. 선발된 유산균 4종에 대하여 항균활성 조사 결과, 그 중 3종이 Escherichia coli ATCC 10798, Staphylococcus aureus KCCM 11593, Listeria invanovii KCTC3444, Bacillus cereus ATCC11778 및 S. enterica serovar. Typhi KCTC1926에 대하여 항균활성이 뛰어났다. 이들 결과를 바탕으로 선발된 균주는 프로바이오틱의 가능성으로 기능성식품에 활용이 기대된다.

Keywords

SMGHBM_2019_v29n6_697_f0001.png 이미지

Fig. 1. Molecular Phylogenetic analysis by Maximum Likelihood method. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model [1]. The tree with the highest log likelihood (-3382.85) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 14 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 1188 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [17].

SMGHBM_2019_v29n6_697_f0002.png 이미지

Fig 2. Hydrophobicity of selected 4 strains and LGG.

Table 1. pH resistance of selected 4 strains at various pH from 6.5 to 2.0

SMGHBM_2019_v29n6_697_t0001.png 이미지

Table 2. Bile tolerance of selected 4 strains at various bile salt from 0 to 1.0%

SMGHBM_2019_v29n6_697_t0002.png 이미지

Table 3. Adhesion ability to Caco-2 cells of selected 4 strains and LGG

SMGHBM_2019_v29n6_697_t0003.png 이미지

Table 4. Antimicrobial activities of selected 4 strains against food pathogens

SMGHBM_2019_v29n6_697_t0004.png 이미지

Table 5. Antibiotic susceptibility of selected 4 strains

SMGHBM_2019_v29n6_697_t0005.png 이미지

References

  1. Adesokan, I. A., Odetoyinbo, B. B. and Olubamiwa, A. O. 2008. Biopreservative activity of lactic acid bacteria on suya produced from poultry meat. Afr. J. Biotechnol. 7, 3799-3803.
  2. Bar-Ness, R., Avrabamy, N., Matsuyama, T. and Rosenberg, M. 1988. Increased cell surface hydrophobicity of a Serraia marcescens NS 38 mutant lacking wetting activity. J. Bacteriol. 170, 4361-436. https://doi.org/10.1128/JB.170.9.4361-4364.1988
  3. Chon, J. W., Kim, D. H., Kim, H. S., Kim, H. S., Hwang, D. G., Song, K. Y., Yim, J. H., Choi, D. S., Lim, J. S. and Seo, K. H. 2014. Effect of probiotics on risk factors for human disease: A review. Kor. J. Dairy Sci. Technol. 32, 17-29.
  4. Clinical and Laboratory Standards Institute. 2006. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria: Approved Guideline M45-A. Clinical and Laboratory Standards Institute, 26.
  5. Diep, D. B., Godager, L., Brede, D. and Nes, I. F. 2006. Data minig and characterization of a novel pediocin-like bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745. Microbiology 152, 1649-1659. https://doi.org/10.1099/mic.0.28794-0
  6. Donohue, D. C. and Salminen, S. 1996. Safety of probiotic bacteria. Asia Pac. J. Clin. Nutr. 5, 25-28.
  7. Doyle, R. J. and Rosenberg, M. 1995. Measurement of microbial adhesion to hydrophobic substrata. Methods Enzymol. 253, 532-550.
  8. Dunne, C. L., O'Mahoney, L., Murphy, L., Thornton, D., Morrissey, D., O'Halloran, S., Feeney, M., Flynn, S., Fitzgerald, G., Daly, C., Kiely, B., O'Sullivan, G. C., Shanahan, F. and Collins, J. K. 2001. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am. J. Clin. Nutr. 73, 386S-392S. https://doi.org/10.1093/ajcn/73.2.386s
  9. Eor, J, Y,, Park, M. H. and Kim, S. H. 2015. Prevention of obesity and type 2 diabetes by using probiotics. J. Milk Sci. Biotechnol. 33, 231-235.
  10. Fernadez, M. F., Boris, S. and Barbes, C. 2003. Probiotic properties of human Lactobacilli strains to be used in the gastrointestinal tract. J. Appl. Microbiol. 94, 449-455. https://doi.org/10.1046/j.1365-2672.2003.01850.x
  11. Gilliland, S. E. and Speck, M. L. 1977. Deconjugation of bile acids by intestinal Lactobacilli. Appl. Environ. Microbiol. 33, 15-18. https://doi.org/10.1128/AEM.33.1.15-18.1977
  12. Gueimonde, M. and Salminen, S. 2006. New methods for selecting and evaluating probiotics. Dig. Liver Dis. 38, S242-S247. https://doi.org/10.1016/S1590-8658(07)60003-6
  13. Hazen, K. C., Lay, J. G., Hazen, B. W., Fu, R. C. and Murthy, S. 1990. Partial biochemical charaterization of cell surface hydrophobicity and hydrophilicity of Candida albicans. Infect. Immun. 58, 3469-3476. https://doi.org/10.1128/IAI.58.11.3469-3476.1990
  14. Jonganurakkun, B., Wang, Q., Xu, S. H., Tada, Y., Minamida, K., Yasokawa, D., Sugi, M., Hara, H. and Asano, K. 2008. Pediococcus pentosaceus NB-17 for probiotic use. J. Biosci. Bioeng. 106, 69-73. https://doi.org/10.1263/jbb.106.69
  15. Kim, Y. M., Park, U. K., Mok, J. S. and Chang, D. S. 1995. Physiological characteristics of Listeria monocytogenes YM-7. Kor. Fish Aquatic Sci. 28, 443-450.
  16. Kos, B., Suskoviae, J., Vukoviae, S., Simpraga, M., Frece, J. and Matosiae, S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 94, 981-987. https://doi.org/10.1046/j.1365-2672.2003.01915.x
  17. Lim, K. S. and Huh, C. S. 2006. Adhesion of bifidobacteria to Caco-2 cells and in relation to cell surface hydrophobicity. Kor. J. Food Sci. Anim. Resour. 26, 497-502.
  18. Maria, G. V. P., Franz, C . M., Schillinger, U. and Holzapfel, W. H. 2006. Lactobacillus spp. with i n vitro probiotic properties from human faeces and traditional fermented products. Int. J. Food Microbiol. 109, 205-214. https://doi.org/10.1016/j.ijfoodmicro.2006.01.029
  19. Mathara, J. M., Schillinger, U., Guigas, C., Franz, C., Kutima, P. M. and Mbugua, S. K., et al. 2008. Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int. J. Food Microbiol. 126, 57-64. https://doi.org/10.1016/j.ijfoodmicro.2008.04.027
  20. Mishra, V. and Prasad, D. N. 2005. Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int. J. Food Microbiol. 103, 109-115. https://doi.org/10.1016/j.ijfoodmicro.2004.10.047
  21. Obadina, A. O., Oyewole, O. B., Sanni, L. O. and Tomlins, K. I. 2006. Bio-preservative activities of Lactobacillus plantarum strains in fermenting Casssava 'fufu'. Afr. J. Biotechnol. 5, 620-623.
  22. Ouwehand, A. C., Salminen, S. and Isolauri, E. 2002. Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82, 279-289. https://doi.org/10.1023/A:1020620607611
  23. Puttalingamma, V., Begum, K. and Bawa, A. S. 2006. Anti microbial peptides-new weapons against enteric pathogens. Pak. J. Nutr. 5, 432-435. https://doi.org/10.3923/pjn.2006.432.435
  24. Radulovic, Z., Miocinovic, J., Mirkovic, N., Mirkovic, M., Paunovic, D., Ivanovic, M. and Seratlic, S. 2017. Survival of spray dried and free-cells of potential probiotic Lacto bacillus plantarum 564 in soft goat cheese. Anim. Sci. J. 88, 1849-1854. https://doi.org/10.1111/asj.12802
  25. Ramos, C. L., Thorsen, L., Schwan, R. F. and Jespersen, L. 2013. Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol. 36, 22-29. https://doi.org/10.1016/j.fm.2013.03.010
  26. Rim, E. J., Monia, E. B., Pilar, C. M., Karola, B., Inmaculada, C. F. N., Jorge, B. V. and Balkiss, B. Z. 2015. In vitro probiotic profiling of novel Enterococcus faecium and Leuconostoc mesenteroides from Tunisian freshwater fishes. Can. J. Microbiol. 62, 60-71. https://doi.org/10.1139/cjm-2015-0481
  27. Sahadeva, R. P. K., Leong, S. F., Chua, K. H., Tan, C. H., Chan, H. Y., Tong, E. V., Wong, S. Y. W. and Chan, H. K. 2011. Survival of commercial probiotic strains to pH and bile. Int. Food Res. J. 18, 1515-1522.
  28. Sybesma, W., Hugenholtz, J., de Vos, W. M. and Smid, E. J. 2006 Safe use of genetically modified lactic acid bacteria in food, bridging the gap between consumers, green groups, and industry. Electron. J. Biotechnol. 9, 424-448.
  29. Tagg, J. R., Dajani, A. S. and Wannamake, L. W. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40, 722-756. https://doi.org/10.1128/MMBR.40.3.722-756.1976
  30. Tulumoglu, S., Yuksekdag, Z. N., Beyatli, Y., Simek, O., Cinar, B. and Yasar, E. 2013. Probiotic properties of Lactobacilli species isolated from children's feces. Anaerobe 24, 36-42. https://doi.org/10.1016/j.anaerobe.2013.09.006
  31. Yang, H. J., Jung, S. J., Jung, S. Y., Ryu, M. S. and Jung, D. Y. 2018. Isolation of biogenic amine non-producing Lactobacillus brevis SBB07 and its potential probiotic properties. J. Life Sci. 28, 68-77. https://doi.org/10.5352/JLS.2018.28.1.68
  32. Wasilewski, A., Zielinska, M., Storr, M. and Fichna, J. 2015. Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1674-1682. https://doi.org/10.1097/MIB.0000000000000364