• Title/Summary/Keyword: Probe 차량

Search Result 77, Processing Time 0.023 seconds

Development of a GPS/GIS based Real-time Congestion Index for Traffic Information (교통정보제공을 위한 GPS/GIS기반의 실시간 혼잡지표개발)

  • Choi, Kee-Choo;Jang, Jeong-Ah;Jeong, Jae-Young;Shim, Sang-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.53-60
    • /
    • 2004
  • Congestion index is needed for quantifying congestion level for various areas. So far, the index has been calculated based on multiple vehicle data for specified time interval. Such being the case, it was costly to build it and the usage of it was focused on policy development and evaluation rather than on traffic information provision. This study focuses on a development on a single vehicle based congestion index which can be a representative value for link congestion level and link speed information at the same time for dual purposes of traditional usages and information provision. A new term has been added for representing real time based arterial congestion level and it has been verified on a real time basis. The index was based on single vehicle GPS data and seemed to be cost effective in deriving the index. With the help of the index, the traffic information contents can be diversified in a constructive way in providing real time traffic information for ITS area and in using congestion level determination for traditional transportation areas.

  • PDF

A Study on Estimation of Traffic Flow Using Image-based Vehicle Identification Technology (영상기반 차량인식 기법을 이용한 교통류 추정에 관한 연구)

  • Kim, Minjeong;Jeong, Daehan;Kim, Hoe Kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.110-123
    • /
    • 2019
  • Traffic data is the most basic element necessary for transportation planning and traffic system operation. Recently, a method of estimating traffic flow characteristics using distance to a leading vehicle measured by an ADAS camera has been attempted. This study investigated the feasibility of the ADAS vehicle reflecting the distance error of image-based vehicle identification technology as a means to estimate the traffic flow through the normalized root mean square error (NRMSE) based on the number of lanes, traffic demand, penetration rate of probe vehicle, and time-space estimation area by employing the microscopic simulation model, VISSIM. As a result, the estimate of low density traffic flow (i.e., LOS A, LOS B) is unreliable due to the limitation of the maximum identification distance of ADAS camera. Although the reliability of the estimates can be improved if multiple lanes, high traffic demands, and high penetration rates are implemented, artificially raising the penetration rates is unrealistic. Their reliability can be improved by extending the time dimension of the estimation area as well, but the most influential one is the driving behavior of the ADAS vehicle. In conclusion, although it is not possible to accurately estimate the traffic flow with the ADAS camera, its applicability will be expanded by improving its performance and functions.

Analysis of Driving and Environmental Impacts by Providing Warning Information in C-ITS Vehicles Using PVD (PVD를 활용한 C-ITS 차량 내 경고정보 제공에 따른 주행 및 환경영향 분석)

  • Yoonmi Kim;Ho Seon Kim;Kyeong-Pyo Kang;Seoung Bum Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.224-239
    • /
    • 2023
  • C-ITS (Cooperative-Intelligent Transportation System) refers to user safety-oriented technology and systems that provide forward traffic situation information based on a two-way wireless communication technology between vehicles or between vehicles and infrastructure. Since the Daejeon-Sejong pilot project in 2016, the C-ITS infrastructure has been installed at various locations to provide C-ITS safety services through highway and local government demonstration projects. In this study, a methodology was developed to verify the effectiveness of the warning information using individual vehicle data collected through the Gwangju Metropolitan City C-ITS demonstration project. The analysis of the effectiveness was largely divided into driving behavior impact analysis and environmental analysis. Compliance analysis and driving safety evaluation were performed for the driving impact analysis. In addition, to supplement the inadequate collection of Probe Vehicle Data (PVD) collected during the C-ITS demonstration project, Digital Tacho Graph ( DTG ) data was additionally collected and used for effect analysis. The results of the compliance analysis showed that drivers displayed reduced driving behavior in response to warning information based on a sufficient number of valid samples. Also, the results of calculating and analyzing driving safety indicators, such as jerk and acceleration noise, revealed that driving safety was improved due to the provision of warning information.

Assessment of Freeway Crash Risk using Probe Vehicle Accelerometer (프로브차량 가속도센서를 이용한 고속도로 교통사고 위험도 평가기법)

  • Park, Jae-Hong;Oh, Cheol;Kang, Kyeong-Pyo
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • Understanding various casual factors affecting the occurrence of freeway traffic crash is a backbone of deriving effective countermeasures. The first step toward understanding such factors is to identify crash risks on freeways. Unlike existing studies, this study focused on the unsafe vehicle maneuvering that can be detected by in-vehicle sensors. The recent advancement of sensor technologies allows us to gather and analyze detailed microscopic events leading to crash occurrence such as the abrupt change in acceleration. This study used an accelerometer to capture the unsafe events. A set of candidate variables representing unsafe events were derived from analyzing acceleration data obtained by the accelerometer. Then, the crash risk was modeled by the binary logistic regression technique. The probabilistic outcome of crash risk can be provided by the proposed model. An application of the methodology assessing crash risk was presented, and further research items for the successful field implementation were also discussed.

A Novel Method for Estimating Representative Section Travel Times Using Individual Vehicle Trajectory Data (개별차량 주행정보를 이용한 차로별 구간대표통행시간 산출기법)

  • Rim, Hee-Sub;Oh, Cheol;Kang, Kyeong-Pyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.23-35
    • /
    • 2009
  • This study proposes a methodology for estimating representative section travel times using individual vehicle travel information under the ubiquitous transportation environment (UTE). A novel approach is to substantialize a concept of dynamic node-links in processing trajectory data. Also, grouping vehicles was conducted to obtain more reliable travel times representing characteristics of individual vehicle travels. Since the UTE allows us to obtain higher accuracy of vehicle positions, travel times for each lane can be estimated based on the proposed methodology. Evaluation results show that less than 10% of mean absolute percentage error was achievable with 20% of probe vehicle rate. It is expected that outcome of this study is useful for providing more accurate and reliable traffic information services.

  • PDF

Effective Real-Time Information Control Algorithm Using Ad Hoc Relaying System for Car Navigation Systems (차량 항법 시스템 환경에서 Ad Hoc Relaying System을 이용한 효과적인 실시간 정보 제어 기법)

  • 변계섭;임성화;김재훈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10e
    • /
    • pp.346-348
    • /
    • 2002
  • 차량 항법 시스템(Car Navigation System)은 요즘 많은 발전을 거듭하여 차량 이용시 사용자가 가고자하는 목적지까지의 길을 쉽게 안내하고 있다. 이런 기술의 발전은 단순한 정적인 길 안내(Static Route Guidance) 뿐만 아니라. 동적인 길 안내(Dynamic Route Guidance)를 함으로써 자동차 운전자가 쉽고 빠른 길을 안내 받을 수 있게 되었다. 그러나 이러한 교통정보는 매우 변화가 심하므로 최초로 경로를 전송 받은 후 그 경로상에 교통정보가 변화하였다면, 이미 전송 받은 경로는 실시간으로 적극적으로 대응할 수 없고 실제 막히는 길로 안내할 수 있다. 목적지까지의 거리가 먼 경우 이런 현상이 더욱 심하게 나타날 수 있다. 이런 경우 운전자는 실제로는 막히는 길로 안내 받을 수 밖에 없다. 이런 문제점을 해결하기 위해 교통정보를 수집하는 기존의 시스템에 Ad Hoc 네트워킹이 가능한 시스템을 탑재한 교통정보 수집 차량(Probe Car)을 이용한다. 정보 수집 차량이 극심한 정체를 발견하면 근처를 지나는 경로를 가진 차량에게 이를 전달하여 새로운 경로를 다운받을 수 있도록 한다. 이런 방법은 Ad Hoc Relaying System〔l〕을 이용하여 가능하며, 센터에 수집되고 가공되는 시간을 최대한 줄일 수 있으며, 센터의 통신 오버헤드를 최소화할 수 있다. 또한 기지국에 호가 집중되어 call blocking이 발생함 경우에 이를 해결할 수 있다.

  • PDF

Imputation Model for Link Travel Speed Measurement Using UTIS (UTIS 구간통행속도 결측치 보정모델)

  • Ki, Yong-Kul;Ahn, Gye-Hyeong;Kim, Eun-Jeong;Bae, Kwang-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.63-73
    • /
    • 2011
  • Travel speed is an important parameter for measuring road traffic. UTIS(Urban Traffic Information System) was developed as a mobile detector for measuring link travel speeds in South Korea. After investigation, we founded that UTIS includes some missing data caused by the lack of probe vehicles on road segments, system failures and etc. Imputation is the practice of filling in missing data with estimated values. In this paper, we suggests a new model for imputing missing data to provide accurate link travel speeds to the public. In the field test, new model showed the travel speed measuring accuracy of 93.6%. Therefore, it can be concluded that the proposed model significantly improves travel speed measuring accuracy.

A Study to Evaluate the Impact of In-Vehicle Warning Information on Driving Behavior Using C-ITS Based PVD (C-ITS 기반 PVD를 활용한 차량 내 경고정보의 운전자 주행행태 영향 분석)

  • Kim, Tagyoung;Kim, Ho Seon;Kang, Kyeong-Pyo;Kim, Seoung Bum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.28-41
    • /
    • 2022
  • A road system with CV(Connected Vehicle)s, which is often referred to as a cooperative intelligent transportation system (C-ITS), provides various road information to drivers using an in-vehicle warning system. Road environments with CVs induce drivers to reduce their speed or change lanes to avoid potential risks downstream. Such avoidance maneuvers can be considered to improve driving behaviors from a traffic safety point of view. Thus, empirically evaluating how a given in-vehicle warning information affects driving behaviors, and monitoring of the correlation between them are essential tasks for traffic operators. To quantitatively evaluate the effect of in-vehicle warning information, this study develops a method to calculate compliance rate of drivers where two groups of speed profile before and after road information is provided are compared. In addition, conventional indexes (e.g., jerk and acceleration noise) to measure comfort of passengers are examined. Empirical tests are conducted by using PVD (Probe Vehicle Data) and DTG (Digital Tacho Graph) data to verify the individual effects of warning information based on C-ITS constructed in Seoul metropolitan area in South Korea. The results in this study shows that drivers tend to decelerate their speed as a response to the in-vehicle warning information. Meanwhile, the in-vehicle warning information helps drivers to improve the safety and comport of passengers.

Performance Analysis of Traffic Information Service Based on VANET (VANET기반 교통정보 서비스 방식 성능분석)

  • Kim, Dong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.149-153
    • /
    • 2012
  • We propose a traffic information service for which traffic data are collected over ad-hoc networks from neighbor vehicles, processed to minimize the data size, and eventually provided to its destination. The proposed scheme simply relies on the existing navigtion systems in vehicles and wireless communication devices for vehicle-to-vehicle communication, rather than on a separately established server. It allows collecting and analyzing traffic status of large areas without incorporating separated monitoring systems, e.g., probe cars and enables to provide accurate traffic information to drivers in timely manner. We also evaluate its performance by ns-3 simulation.

Determining the Appropriate Installation Angle of Skewed Sensor to Measure Vehicle Wandering (차량 원더링 계측을 위한 사선센서 적정 설치각도 결정)

  • Oh, Ju-Sam;Jang, Kyung-Chan;Kim, Min-Sung;Jang, Jin-Hwan
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.79-86
    • /
    • 2008
  • This paper proposed the appropriate installation angle of skewed sensors for measuring vehicle wandering data, which are collected to figure out the location of dynamic weight of a moving vehicle on roadways. We developed a device using tape-switch sensors and a computer program and collected vehicle wandering data with the device and probe vehicles. As a result, the steeper the skewed sensor was installed, the lower the error was shown. However, we could not collect proper data when a skewed sensor was set up higher than $30^{\circ}$ due to tandem axle. Therefore, this study suggested the appropriate angle of skewed sensors as a degree of $20^{\circ}$ to $25^{\circ}$ for gathering wandering data.

  • PDF