DOI QR코드

DOI QR Code

A Study on Estimation of Traffic Flow Using Image-based Vehicle Identification Technology

영상기반 차량인식 기법을 이용한 교통류 추정에 관한 연구

  • Kim, Minjeong (Dept. of Urban Planning and Engineering, Dong-A University) ;
  • Jeong, Daehan (Dept. of Urban Planning and Engineering, Dong-A University) ;
  • Kim, Hoe Kyoung (Dept. of Urban Planning and Engineering, Dong-A University)
  • 김민정 (동아대학교 도시계획공학과) ;
  • 정대한 (동아대학교 도시계획공학과) ;
  • 김회경 (동아대학교 도시계획공학과)
  • Received : 2019.10.30
  • Accepted : 2019.11.18
  • Published : 2019.12.31

Abstract

Traffic data is the most basic element necessary for transportation planning and traffic system operation. Recently, a method of estimating traffic flow characteristics using distance to a leading vehicle measured by an ADAS camera has been attempted. This study investigated the feasibility of the ADAS vehicle reflecting the distance error of image-based vehicle identification technology as a means to estimate the traffic flow through the normalized root mean square error (NRMSE) based on the number of lanes, traffic demand, penetration rate of probe vehicle, and time-space estimation area by employing the microscopic simulation model, VISSIM. As a result, the estimate of low density traffic flow (i.e., LOS A, LOS B) is unreliable due to the limitation of the maximum identification distance of ADAS camera. Although the reliability of the estimates can be improved if multiple lanes, high traffic demands, and high penetration rates are implemented, artificially raising the penetration rates is unrealistic. Their reliability can be improved by extending the time dimension of the estimation area as well, but the most influential one is the driving behavior of the ADAS vehicle. In conclusion, although it is not possible to accurately estimate the traffic flow with the ADAS camera, its applicability will be expanded by improving its performance and functions.

교통 데이터는 교통계획이나 교통시스템 운영에 필요한 기초 자료이며 최근 ADAS 카메라로 측정한 선행 차량과의 거리를 이용하여 교통류를 파악하는 방법이 시도되고 있다. 본 연구는 영상기반 차량인식의 거리오차를 반영한 미시적 시뮬레이션 분석을 통해 교통류를 추정하기 위한 ADAS 차량의 활용 가능성을 살펴보았다. 차로수, 교통수요, 프로브 차량의 점유율(MPR), 시공간 검지영역 등에 따른 교통류 추정치의 표준 평균 제곱근 오차를 통해 분석을 수행하였다. 분석결과, ADAS 카메라의 최대 인식거리의 한계로 저밀도 교통류(LOS A, LOS B)의 추정치는 신뢰할 수 없는 수준이다. 다차로나 교통수요가 크고 점유율(MPR)이 높을 경우 추정치의 신뢰성이 개선될 수 있지만, 인위적으로 점유율(MPR)을 높이는 것은 현실적으로 어려움이 있다. 또한, 검지영역의 시간범위를 연장함으로써 추정치의 신뢰성을 개선할 수 있지만, 가장 크게 영향을 미치는 것은 ADAS 차량의 주행행태로서 해당 차량이 도로의 교통류와 상이한 주행행태를 보일 경우 그 추정치는 신뢰할 수 없게 된다. 결론적으로 모든 교통류를 정확히 추정하지는 못 하지만 ADAS 카메라의 성능이나 기능을 개선함으로써 ADAS 차량의 활용 가능성은 확대될 것이다.

Keywords

References

  1. Do C.(1989), Principle of Transportation Engineering, Cheongmoongak, pp.57-58.
  2. Edie L. C.(1963), "Discussion of Traffic Stream Measurements and Definitions," Proceedings of the 2nd International Symposium on the Theory of Traffic Flow, London, U.K., pp.139-154.
  3. Gerlough D. L. and Huber M. J.(1975), "Traffic Flow Theory A Monograph," Transportation Research Board, Special Report 165, pp.8-13.
  4. Han E., Kim S. B., Rho J. H. and Yun I.(2016), "Comparison of the Methodologies for Calculating Expressway Space Mean Speed Using Vehicular Trajectory Information from a Radar Detector," Journal of Korea Institute of Intelligent Transportation Systems, vol. 15, no. 3, pp.34-44. https://doi.org/10.12815/kits.2016.15.3.034
  5. Heijden R. and Marchau V.(2005), "Editorial: Advanced Driver Assistance Systems: Behavioural Implications of Some Recent Developments," European Journal of Transport and Infrastructure Research, vol. 5, no. 4, pp.239-252.
  6. Jeon Y. Y. and Dae M.(2009), "Influence on Driver Behavior According to Providing Collision Avoidance Information on Highway," Journal of Korean Society of Transportation, vol. 27, no. 4, pp.137-143.
  7. Jeong E. B.(2013), "Methodology for Estimating Safety Benefits of Advanced Driver Assistant Systems," The Journal of The Korea Institute of Intelligent Transport Systems, vol. 12, no. 3, pp.65-77. https://doi.org/10.12815/kits.2013.12.3.065
  8. Kawasaki Y., Seo T., Kusakabe T. and Asakura Y.(2017), "Fundamental Diagram Estimation Using GPS Trajectories of Probe Vehicles," 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan.
  9. Khan S. M., Dey K. C. and Chowdhury M.(2017), "Real-Time Traffic State Estimation with Connected Vehicles," IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 7, pp.1687-1699. https://doi.org/10.1109/TITS.2017.2658664
  10. Korea Ministry of Government Legislation(2017), Article 30 of the Enforcement Rules of the Traffic Safety Act.
  11. Lee T. Y., Yi K. S. and Lee J. W.(2011), "Development of Safety-index for Evaluations of Advanced Emergency Braking System," Proceedings of The Korean Society of Automotive Engineers, vol. 2011, no. 5, pp.1591-1596.
  12. Lv Y., Duan Y., Kang W., Li Z. and Wang F.(2015), "Traffic Flow Prediction with Big Data: a Deep Learning Approach," IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp.865-873. https://doi.org/10.1109/TITS.2014.2345663
  13. May A. D.(1990), Traffic Flow Fundamentals, Prentice Hall, pp.127-130.
  14. Ministry of Land, Infrastructure and Transport(2019), Announcement No. 2019-1200.
  15. Ministry of Land, Infrastructure and Transport, http://www.molit.go.kr/USR/law/m_46/dtl.jsp?r_id=6323, 2019.10.01.
  16. Page Y., Hermitte T., Chauval C., Elslande P. V., Hill J., Kirk A. and Hautzinger H.(2009), "Reconsidering Accident Causation Analysis and Evaluating the Safety Benefits of Technologies: Final Results of the TRACE Project," Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles(ESV), Paper No. 09-0148, Stuttgart, Germany.
  17. PLK(2017), Development of Technology for Developing AEB System based on Monocular Camera, KIAT(Korea Institute for Advancement of Technology).
  18. Seo T. and Kusakabe T.(2015), "Probe Vehicle-based Traffic State Estimation Method with Spacing Information and Conservation Law," Transportation Research Part C: Emerging Technologies, vol. 59, pp.391-403. https://doi.org/10.1016/j.trc.2015.05.019
  19. Seo T., Kusakabe T. and Asakura Y.(2015), "Estimation of Flow and Density Using Probe Vehicles with Spacing Measurement Equipment," Transportation Research Part C: Emerging Technologies, vol. 53, pp.134-150. https://doi.org/10.1016/j.trc.2015.01.033
  20. Seo T., Kusakabe T. and Asakura Y.(2015), "Traffic State Estimation with the Advanced Probe Vehicles Using Data Assimilation," 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), Las Palmas, Spain.
  21. Sugimoto Y. and Sauer C.(2005), "Effectiveness Estimation Method for Advanced Driver Assistance System and its Application to Collision Mitigation Brake System," Proceedings of 19th International Technical Conference on the Enhanced Safety of Vehicles(ESV), Washington D.C., U.S., Paper No. 05-0148-O.
  22. Tak S. H., Yu H. P. and Yeo H. S.(2017), "A Study on the Intersection Accident Defense Performance of Automatic Emergency Braking System Based on Major Accidents Scenarios," Proceedings of The Korea Institute of Intelligent Transport Systems, vol. 2017, no. 10, pp.135-140.
  23. TMS(Traffic Monitoring System)(2018), http://www.road.re.kr/itms/itms_1.asp?pageNum=3&subNum=1, 2019.10.01.
  24. Zhao Y., Zheng J., Wong W., Wang X., Meng Y. and Liu H. X.(2019), "Various Methods for Queue Length and Traffic Volume Estimation Using Probe Vehicle Trajectories," Transportation Research Part C: Emerging Technologies, vol. 107, pp.70-91. https://doi.org/10.1016/j.trc.2019.07.008