• Title/Summary/Keyword: Probabilistic Concept

Search Result 158, Processing Time 0.024 seconds

Probabilistic Fatigue Crack Growth Analysis under Random Loading (불규칙 하중하의 확률론적 피로균열 성장 해석)

  • Song, Sam-Hong;Chang, Doo-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.192-200
    • /
    • 1994
  • The methodology of a simple probabilistic fatigue crack under random loading is proposed. Using the crack closure concept, the crack opening stress is assumed to be constant during random loading. The loading history was analyzed to determine the probability density functions, probability distribution functions and other related parameters for the probabilistic fatigue crack growth analysis. Fatigue crack growth using the exisiting available data was predicted by the proposed probabilistic analysis and compared with experimental data.

  • PDF

SOME COMMON FIXED POINT THEOREMS WITH CONVERSE COMMUTING MAPPINGS IN BICOMPLEX-VALUED PROBABILISTIC METRIC SPACE

  • Sarmila Bhattacharyya;Tanmay Biswas;Chinmay Biswas
    • The Pure and Applied Mathematics
    • /
    • v.31 no.3
    • /
    • pp.299-310
    • /
    • 2024
  • The probabilistic metric space as one of the important generalizations of metric space, was introduced by Menger [16] in 1942. Later, Choi et al. [6] initiated the notion of bicomplex-valued metric spaces (bi-CVMS). Recently, Bhattacharyya et al. [3] linked the concept of bicomplex-valued metric spaces and menger spaces, and initiated menger space with bicomplex-valued metric. Here, in this paper, we have taken probabilistic metric space with bicomplex-valued metric, i.e., bicomplexvalued probabilistic metric space and proved some common fixed point theorems using converse commuting mappings in this space.

Study of Explanatory Power of Deterministic Risk Assessment's Probability through Uncertainty Intervals in Probabilistic Risk Assessment (고장률의 불확실구간을 고려한 빈도구간과 결정론적 빈도의 설명력 연구)

  • Man Hyeong Han;Young Woo Chon;Yong Woo Hwang
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.3
    • /
    • pp.75-83
    • /
    • 2024
  • Accurately assessing and managing risks in any endeavor is crucial. Risk assessment in engineering translates the abstract concept of risk into actionable strategies for systematic risk management. However, risk validation is met with significant skepticism, particularly concerning the uncertainty of probability. This study aims to address the aforementioned uncertainty in a multitude of ways. Firstly, instead of relying on deterministic probability, it acknowledges uncertainty and presents a probabilistic interval. Secondly, considering the uncertainty interval highlighted in OREDA, it delineates the bounds of the probabilistic interval. Lastly, it investigates how much explanatory power deterministic probability has within the defined probabilistic interval. By utilizing fault tree analysis (FTA) and integrating confidence intervals, a probabilistic risk assessment was conducted to scrutinize the explanatory power of deterministic probability. In this context, explanatory power signifies the proportion of probability within the probabilistic risk assessment interval that lies below the deterministic probability. Research results reveal that at a 90% confidence interval, the explanatory power of deterministic probability decreases to 73%. Additionally, it was confirmed that explanatory power reached 100% only with a probability application 36.9 times higher.

A Study on the Preliminary Ship Design Method using Deterministic Approach and Probabilistic Approach (확정론적 기법 및 확률론적 기법을 적용한 선박 초기 설계 방법에 관한 연구)

  • 양영순;박창규;유원선
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.3
    • /
    • pp.49-59
    • /
    • 2004
  • The paper describes the preliminary ship design method using deterministic approach and probabilistic approach. In deterministic approach, there are computational aspects to applying not only the integration concurrently of principal dimension decisions and hull form variations but also hydrostatic coefficients that applied to optimization iterative process. Therefore, this paper developed that actual design concept at the preliminary ship design more than sequential design which separated in principal dimension decisions and hull form variations. Furthermore, a probabilistic approach at the preliminary ship design is applied to efficiently solve design information uncertainty that compared to deterministic approach.

A Design Variable Study of Plane Stress Element by Reliability Analysis (신뢰성 해석에 의한 평면응력요소의 설계변수 분석)

  • 박석재;최외호;김요숙;신영수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.102-109
    • /
    • 2001
  • In order to take account of the statistical properties of probability variables used in the structural analysis, the conventional approach using the safety factor based on past experience usually estimated the safety of a structure. The real structures could only be analyzed with the error in estimation of loads, material characters and the dimensions of the members. But the errors should be considered systematically in the structural analysis. Structural safety could not precisely be appraised by the traditional structural design concept. Recently, new approach based on the probability concept has been applied to the assessment of structural safety using the reliability concept. Thus, the computer program by the Probabilistic FEM is developed by incorporating the probabilistic concept into the conventional FEM method. This paper estimated for the reliability of a plane stress structure by Advanced First-Order Second Moment method using von Mises, Tresca and Mohr-Coulomb failure criterions. The reliability index and failure probability of attained by the Monte Carlo Simulation method with the von Mises criterion were same as PFEM, but the Monte Carlo Simulation were very time-consuming. The variance of member thickness and load could influence the reliability and failure probability most sensitively among the design variables from the results of the parameter analysis. And proper failure criterion must be used to design safely.

  • PDF

Probabilistic Bilinear Transformation Space-Based Joint Maximum A Posteriori Adaptation

  • Song, Hwa Jeon;Lee, Yunkeun;Kim, Hyung Soon
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.783-786
    • /
    • 2012
  • This letter proposes a more advanced joint maximum a posteriori (MAP) adaptation using a prior model based on a probabilistic scheme utilizing the bilinear transformation (BIT) concept. The proposed method not only has scalable parameters but is also based on a single prior distribution without the heuristic parameters of the previous joint BIT-MAP method. Experiment results, irrespective of the amount of adaptation data, show that the proposed method leads to a consistent improvement over the previous method.

A Case Study of Tunnel Keyblock Stability by the Block Failure Likelihood (블록파괴가능성을 이용한 터널키블록의 안정해석 사례연구)

  • 이인모;박준경;이석원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.315-322
    • /
    • 1999
  • The probabilistic keyblock concept which was based upon block theory was applied to the example site by using the observed block moulds data. The more was the block failure likelihood (P(B)) which was defined by the product of the joint combination probability, the shape parameter and the instability parameter, the more were the frequencies of failures observed. If we can acquire these data during a tunnel construction stage, they will be used as a very useful data to construct another tunnel in the neighborhood. Furthermore, a sedimentary rock may have larger P(B) values than a crystalline rock, and for the given P(B) value, the percent block moulds are larger in the former than latter.

  • PDF

AN INTERACTIVE BUILDING MODELING SYSTEM BASED ON THE LEGO CONCEPT

  • Chen, Sheng-Yi;Lin, Cong-Kai;Tai, Wen-Kai
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.128-135
    • /
    • 2009
  • In this paper, we proposed an interactive GUI (Graphical User Interface) system to model buildings with an editable script. Our system also provides probabilistic finite-state machine (PFSM) to define the relationships of sub-models with transformation matrices and transition probabilities for constructing new novel building models automatically. User can not only get various building models by PFSM but also adjust the probabilities of sub-models from PFSM to get desired building models. As shown in the results, the various and vivid building models can be constructed easily and quickly for non-expert users. Besides, user can also edit the script file which is provided by our system to modify the properties directly.

  • PDF

Minimum Expected Cost based Design of Vertical Drain Systems (최소기대비용에 의한 연직배수시설의 설계)

  • Kim, Seong-Pil;Son, Young-Hwan;Chang, Pyung-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.93-101
    • /
    • 2007
  • In general, geotechnical properties have many uncertain aspects, thus probabilistic analysis have been used to consider these aspects. It is, however, quite difficult to select an appropriate target probability for a certain structure or construction process. In this study, minimum expected cost design method based on probabilistic analysis is suggested for design of vertical drains generally used to accelerate consolidation in soft clayey soils. A sensitivity analysis is performed to select the most important uncertain parameters for the design of vertical drains. Monte Carlo simulation is used in sensitivity analysis and probabilistic analysis. Total expected cost, defined as the sum of initial cost and expected additive cost, varies widely with variation of input parameters used in design of vertical drain systems. And probability of failure to get the minimum total expected cost varies under the different design conditions. A minimum value of total expected cost is suggested as a design value in this study. The proposed design concept is applicable to unit construction process because this approach is to consider the uncertainties using probabilistic analysis and uncertainties of geotechnical properties.

Online Social Media Review Mining for Living Items with Probabilistic Approach: A Case Study

  • Li, Shuai;Hao, Fei;Kim, Hee-Cheol
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.20-27
    • /
    • 2013
  • The concept of social media is top of the agenda for many business executives and decision makers, as well as consultants try to identify ways where companies can make profitable use of applications such as Netflix, Flixster. The social media is playing an increasingly important role as the information sources for customers making product choices etc. With the flourish of Web 2.0 technology, customer reviews are becoming more and more useful and important information resources for people to save their time and energy on purchasing products that they want. This paper proposes the Bayesian Probabilistic Classification algorithm to mine the social media review, and evaluates it by different splits and cross validation mechanism from the real data set. The explored study experimental results show the robustness and effectiveness of proposed approach for mining the social media review.

  • PDF