• Title/Summary/Keyword: Privacy and healthcare systems

Search Result 49, Processing Time 0.022 seconds

Extension of Minimal Codes for Application to Distributed Learning (분산 학습으로의 적용을 위한 극소 부호의 확장 기법)

  • Jo, Dongsik;Chung, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.479-482
    • /
    • 2022
  • Recently, various artificial intelligence technologies are being applied to smart factory, finance, healthcare, and so on. When handling data requiring protection of privacy, distributed learning techniques are used. For distribution of information with privacy protection, encoding private information is required. Minimal codes has been used in such a secret-sharing scheme. In this paper, we explain the relationship between the characteristics of the minimal codes for application in distributed systems. We briefly deals with previously known construction methods, and presents extension methods for minimal codes. The new codes provide flexibility in distribution of private information. Furthermore, we discuss application scenarios for the extended codes.

Edge Computing Model based on Federated Learning for COVID-19 Clinical Outcome Prediction in the 5G Era

  • Ruochen Huang;Zhiyuan Wei;Wei Feng;Yong Li;Changwei Zhang;Chen Qiu;Mingkai Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.826-842
    • /
    • 2024
  • As 5G and AI continue to develop, there has been a significant surge in the healthcare industry. The COVID-19 pandemic has posed immense challenges to the global health system. This study proposes an FL-supported edge computing model based on federated learning (FL) for predicting clinical outcomes of COVID-19 patients during hospitalization. The model aims to address the challenges posed by the pandemic, such as the need for sophisticated predictive models, privacy concerns, and the non-IID nature of COVID-19 data. The model utilizes the FATE framework, known for its privacy-preserving technologies, to enhance predictive precision while ensuring data privacy and effectively managing data heterogeneity. The model's ability to generalize across diverse datasets and its adaptability in real-world clinical settings are highlighted by the use of SHAP values, which streamline the training process by identifying influential features, thus reducing computational overhead without compromising predictive precision. The study demonstrates that the proposed model achieves comparable precision to specific machine learning models when dataset sizes are identical and surpasses traditional models when larger training data volumes are employed. The model's performance is further improved when trained on datasets from diverse nodes, leading to superior generalization and overall performance, especially in scenarios with insufficient node features. The integration of FL with edge computing contributes significantly to the reliable prediction of COVID-19 patient outcomes with greater privacy. The research contributes to healthcare technology by providing a practical solution for early intervention and personalized treatment plans, leading to improved patient outcomes and efficient resource allocation during public health crises.

Design of Key Tree-based Management Scheme for Healthcare Information Exchange in Convergent u-Healthcare Service (융합형 u-헬스케어 서비스에서 헬스 정보 교환을 위한 키 트리 기반 관리 체계 설계)

  • Kim, Donghyun;Kim, Seoksoo
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.6
    • /
    • pp.81-86
    • /
    • 2015
  • The threats to privacy and security have received increasing attention as ubiquitous healthcare applications over the Internet become more prevalent, mobile and universal. In particular, we address the communication security issues of access sharing of health information resources in the ubiquitous healthcare environment. The proposed scheme resolves the sender and data authentication problem in information systems and group communications. We propose a novel key management scheme for generating and distributing cryptographic keys to constituent users to provide form of data encryption method for certain types of data concerning resource constraints for secure communications in the ubiquitous healthcare domains.

Prevent Illegal Access Control for Secure Healthcare System (불법적인 접근 제어 방지를 위한 안전한 헬스케어 시스템)

  • Seo, Dae-Hee;Baek, Jang-Mi;Moon, Yong-Hyuk;Cho, Dong-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.657-663
    • /
    • 2010
  • Today, rapid evolution of Internet makes various types of services in ubiquitous environment are intelligent and active. As a result, user's demand on high quality of life increases and health care service based on ubiquitous environment draws a lot of attention. However, user's private information used for health care service is illegally distributed and exposed, causing serious individual and social problems. Therefore, this thesis is intended to suggest a secure health care service to prevent unauthorized third party's access and to protect user's privacy in health care systems. The proposed scheme establishes a session key through communication channel between health care system and user based on explicit mutual authentication and provides secure communication and access control, improving security as one of the leading health care systems.

Medical Information Privacy Concerns in the Use of the EHR System: A Grounded Theory Approach (의료정보 프라이버시 염려에 대한 근거이론적 연구: 전자건강기록(EHR) 시스템을 중심으로)

  • Eom, Doyoung;Lee, Heejin;Zoo, Hanah
    • Journal of Digital Convergence
    • /
    • v.16 no.1
    • /
    • pp.217-229
    • /
    • 2018
  • Electronic Health Record (EHR) systems are widely adopted worldwide in hospitals for generating and exchanging records of patient information. Recent developments are moving towards implementing interoperable EHR systems that enable information to be shared seamlessly across healthcare organizations. In this context, this paper explores the factors that cause medical information privacy concerns, identifies how people react to privacy invasion and what their perceptions are towards the acceptance of the EHR system. Interviews were conducted to draw a grounded theory on medical information privacy concerns in the use of EHRs. Medical information privacy concerns are caused by perceived sensitivity of medical information and the weaknesses in security technologies. Trust in medical professionals, medical institutions and technologies plays an important role in determining people's reaction to privacy invasion and their perceptions on the use of EHRs.

Structural Relationships Among Factors to Adoption of Telehealth Service (원격의료서비스 수용요인의 구조적 관계 실증연구)

  • Kim, Sung-Soo;Ryu, See-Won
    • Asia pacific journal of information systems
    • /
    • v.21 no.3
    • /
    • pp.71-96
    • /
    • 2011
  • Within the traditional medical delivery system, patients residing in medically vulnerable areas, those with body movement difficulties, and nursing facility residents have had limited access to good healthcare services. However, Information and Communication Technology (ICT) provides us with a convenient and useful means of overcoming distance and time constraints. ICT is integrated with biomedical science and technology in a way that offers a new high-quality medical service. As a result, rapid technological advancement is expected to play a pivotal role bringing about innovation in a wide range of medical service areas, such as medical management, testing, diagnosis, and treatment; offering new and improved healthcare services; and effecting dramatic changes in current medical services. The increase in aging population and chronic diseases has caused an increase in medical expenses. In response to the increasing demand for efficient healthcare services, a telehealth service based on ICT is being emphasized on a global level. Telehealth services have been implemented especially in pilot projects and system development and technological research. With the service about to be implemented in earnest, it is necessary to study its overall acceptance by consumers, which is expected to contribute to the development and activation of a variety of services. In this sense, the study aims at positively examining the structural relationship among the acceptance factors for telehealth services based on the Technology Acceptance Model (TAM). Data were collected by showing audiovisual material on telehealth services to online panels and requesting them to respond to a structured questionnaire sheet, which is known as the information acceleration method. Among the 1,165 adult respondents, 608 valid samples were finally chosen, while the remaining were excluded because of incomplete answers or allotted time overrun. In order to test the reliability and validity of the assessment scale items, we carried out reliability and factor analyses, and in order to explore the causal relation among potential variables, we conducted a structural equation modeling analysis using AMOS 7.0 and SPSS 17.0. The research outcomes are as follows. First, service quality, innovativeness of medical technology, and social influence were shown to affect perceived ease of use and perceived usefulness of the telehealth service, which was statistically significant, and the two factors had a positive impact on willingness to accept the telehealth service. In addition, social influence had a direct, significant effect on intention to use, which is paralleled by the TAM used in previous research on technology acceptance. This shows that the research model proposed in the study effectively explains the acceptance of the telehealth service. Second, the research model reveals that information privacy concerns had a insignificant impact on perceived ease of use of the telehealth service. From this, it can be gathered that the concerns over information protection and security are reduced further due to advancements in information technology compared to the initial period in the information technology industry, and thus the improvement in quality of medical services appeared to ensure that information privacy concerns did not act as a prohibiting factor in the acceptance of the telehealth service. Thus, if other factors have an enormous impact on ease of use and usefulness, concerns over these results in the initial period of technology acceptance may become irrelevant. However, it is clear that users' information privacy concerns, as other studies have revealed, is a major factor affecting technology acceptance. Thus, caution must be exercised while interpreting the result, and further study is required on the issue. Numerous information technologies with outstanding performance and innovativeness often attract few consumers. A revised bill for those urgently in need of telehealth services is about to be approved in the national assembly. As telemedicine is implemented between doctors and patients, a wide range of systems that will improve the quality of healthcare services will be designed. In this sense, the study on the consumer acceptance of telehealth services is meaningful and offers strong academic evidence. Based on the implications, it can be expected to contribute to the activation of telehealth services. Further study is needed to assess the acceptance factors for telehealth services, such as motivation to remain healthy, health care involvement, knowledge on health, and control of health-related behavior, in order to develop unique services according to the categorization of customers based on health factors. In addition, further study may focus on various theoretical cognitive behavior models other than the TAM, such as the health belief model.

A Study for Sharing Patient Medical Information with Demographic Datasets (환자 의료 정보 공유 및 데이터 통합을 위한 데모그래픽 데이터 활용 연구)

  • Lim, Jongwoo;Jung, Eun-Young;Jeong, Byoung-Hui;Park, Dong Kyun;Whangbo, Taeg-Keun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.128-136
    • /
    • 2014
  • Recently, although exponentially growing the quantity of information that have been used and shared on internet networks, the patient information of each medical center have not been used and shared among medical centers due to the protection of patients privacy and the different database schema. To address this problem, we have studied the data structure of the patient information, the standard of medical information for patients we propose a patient information sharing system design that each medical center is able to use and share the patient information among medical centers in spite of different patient information systems with protecting patients privacy.

Collaborative Secure Decision Tree Training for Heart Disease Diagnosis in Internet of Medical Things

  • Gang Cheng;Hanlin Zhang;Jie Lin;Fanyu Kong;Leyun Yu
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.514-523
    • /
    • 2024
  • In the Internet of Medical Things, due to the sensitivity of medical information, data typically need to be retained locally. The training model of heart disease data can predict patients' physical health status effectively, thereby providing reliable disease information. It is crucial to make full use of multiple data sources in the Internet of Medical Things applications to improve model accuracy. As network communication speeds and computational capabilities continue to evolve, parties are storing data locally, and using privacy protection technology to exchange data in the communication process to construct models is receiving increasing attention. This shift toward secure and efficient data collaboration is expected to revolutionize computer modeling in the healthcare field by ensuring accuracy and privacy in the analysis of critical medical information. In this paper, we train and test a multiparty decision tree model for the Internet of Medical Things on a heart disease dataset to address the challenges associated with developing a practical and usable model while ensuring the protection of heart disease data. Experimental results demonstrate that the accuracy of our privacy protection method is as high as 93.24%, representing a difference of only 0.3% compared with a conventional plaintext algorithm.

Smart-Coord: Enhancing Healthcare IoT-based Security by Blockchain Coordinate Systems

  • Talal Saad Albalawi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.32-42
    • /
    • 2024
  • The Internet of Things (IoT) is set to transform patient care by enhancing data collection, analysis, and management through medical sensors and wearable devices. However, the convergence of IoT device vulnerabilities and the sensitivity of healthcare data raises significant data integrity and privacy concerns. In response, this research introduces the Smart-Coord system, a practical and affordable solution for securing healthcare IoT. Smart-Coord leverages blockchain technology and coordinate-based access management to fortify healthcare IoT. It employs IPFS for immutable data storage and intelligent Solidity Ethereum contracts for data integrity and confidentiality, creating a hierarchical, AES-CBC-secured data transmission protocol from IoT devices to blockchain repositories. Our technique uses a unique coordinate system to embed confidentiality and integrity regulations into a single access control model, dictating data access and transfer based on subject-object pairings in a coordinate plane. This dual enforcement technique governs and secures the flow of healthcare IoT information. With its implementation on the Matic network, the Smart-Coord system's computational efficiency and cost-effectiveness are unparalleled. Smart-Coord boasts significantly lower transaction costs and data operation processing times than other blockchain networks, making it a practical and affordable solution. Smart-Coord holds the promise of enhancing IoT-based healthcare system security by managing sensitive health data in a scalable, efficient, and secure manner. The Smart-Coord framework heralds a new era in healthcare IoT adoption, expertly managing data integrity, confidentiality, and accessibility to ensure a secure, reliable digital environment for patient data management.

Block-chain based Secure Data Access over Internet of Health Application Things (IHoT)

  • A. Ezil Sam, Leni;R. Shankar;R. Thiagarajan;Vishal Ratansing Patil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1484-1502
    • /
    • 2023
  • The medical sector actively changes and implements innovative features in response to technical development and revolutions. Many of the most crucial elements in IoT-connected health services are safeguarding critical patient records from prospective attackers. As a result, BlockChain (BC) is gaining traction in the business sector owing to its large implementations. As a result, BC can efficiently handle everyday life activities as a distributed and decentralized technology. Compared to other industries, the medical sector is one of the most prominent areas where the BC network might be valuable. It generates a wide range of possibilities and probabilities in existing medical institutions. So, throughout this study, we address BC technology's widespread application and influence in modern medical systems, focusing on the critical requirements for such systems, such as trustworthiness, security, and safety. Furthermore, we built the shared ledger for blockchain-based healthcare providers for patient information, contractual between several other parties. The study's findings demonstrate the usefulness of BC technology in IoHT for keeping patient health data. The BDSA-IoHT eliminates 2.01 seconds of service delay and 1.9 seconds of processing time, enhancing efficiency by nearly 30%.