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Abstract 

 
As 5G and AI continue to develop, there has been a significant surge in the healthcare industry. 
The COVID-19 pandemic has posed immense challenges to the global health system. This 
study proposes an FL-supported edge computing model based on federated learning (FL) for 
predicting clinical outcomes of COVID-19 patients during hospitalization. The model aims to 
address the challenges posed by the pandemic, such as the need for sophisticated predictive 
models, privacy concerns, and the non-IID nature of COVID-19 data. The model utilizes the 
FATE framework, known for its privacy-preserving technologies, to enhance predictive 
precision while ensuring data privacy and effectively managing data heterogeneity. The 
model's ability to generalize across diverse datasets and its adaptability in real-world clinical 
settings are highlighted by the use of SHAP values, which streamline the training process by 
identifying influential features, thus reducing computational overhead without compromising 
predictive precision. The study demonstrates that the proposed model achieves comparable 
precision to specific machine learning models when dataset sizes are identical and surpasses 
traditional models when larger training data volumes are employed. The model's performance 
is further improved when trained on datasets from diverse nodes, leading to superior 
generalization and overall performance, especially in scenarios with insufficient node features. 
The integration of FL with edge computing contributes significantly to the reliable prediction 
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of COVID-19 patient outcomes with greater privacy. The research contributes to healthcare 
technology by providing a practical solution for early intervention and personalized treatment 
plans, leading to improved patient outcomes and efficient resource allocation during public 
health crises. 
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1. Introduction 
The COVID-19 pandemic has caused profound devastation across diverse regions globally. 
While the majority of patients have recovered, those with compromised constitutions or 
underlying conditions have tragically succumbed to the disease [1]. The novel coronavirus 
continues to undergo mutations. The situation calls for the urgent development of sophisticated 
predictive models to enhance outbreak tracking, early detection, and rapid deployment of 
medical resources, underscoring the critical need for advanced data analysis and machine 
learning in combating these challenges. 

The pandemic's response has been hampered by several hurdles, notably the safeguarding 
of user privacy and the collection of comprehensive, real-time data sets for predictive 
modeling. Traditional machine learning approaches, while foundational for predicting clinical 
outcomes, grapple with significant issues [2]-[9]. Centralizing sensitive COVID-19 patient 
data raises serious privacy and security concerns, risking patient confidentiality and exposing 
data to potential breaches. 

Additionally, the non-IID nature of COVID-19 data, shaped by diverse factors like 
regional healthcare practices and genetic variations, challenges traditional models that rely on 
IID assumptions. This can lead to biased or inaccurate predictions. Moreover, the sheer volume 
of data required for robust predictions may overwhelm these models, particularly in regions 
lacking the digital infrastructure to support such data analysis [10]. 

In this context, the study introduces a novel model supported by Federated Learning (FL) 
and edge computing, leveraging decentralized machine learning to address these challenges. 
This model, utilizing the FATE framework known for privacy-preserving technologies like 
homomorphic encryption and secure multi-party computation, is designed to enhance 
predictive precision while ensuring data privacy and managing data heterogeneity effectively. 

This research, by integrating FL with edge computing, contributes significantly to 
predicting COVID-19 patient outcomes more reliably and with greater privacy. It presents a 
robust framework that not only facilitates broader participation in model training but also 
remains precise across varying data conditions. 

The remainder of this paper is structured as follows: Section 2 provides an overview of 
the applications of machine learning and edge computing in the prevention, diagnosis, and 
treatment of COVID-19. Section 3 presents a comprehensive overview of the FL-supported 
edge computing model, including its structure and specific details. Section 4 presents the 
results obtained from applying the proposed model to a real-world dataset. Finally, Section 5 
concludes the paper with a summary of the key findings and contributions. 
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2. Related Work 
The advent of AI technology has had a profound impact on the healthcare industry, particularly 
in the areas of prevention, diagnosis, and treatment of COVID-19. Traditional machine 
learning models, such as Decision Trees (DT), Support Vector Machines (SVM), and Logistic 
Regression (LR), have been widely adopted due to their low algorithmic complexity and cost-
effective hardware implementation [11]-[13]. These models have been crucial in preventing 
further infections by predicting the number of confirmed and death cases of COVID-19, 
predicting mortality and severity by combining cardiac markers with demographic and clinical 
features, and providing early risk assessment and accurate prediction of clinical endpoints 
[2][3][11]. 

On the other hand, deep learning models have shown exceptional capability in various 
medical scenarios, including the detection and diagnosis of COVID-19 through imaging [14]-
[16]. The integration of these models with 5G and edge computing has led to the development 
of frameworks that leverage low latency, scalability, data protection, and reliable local edge 
servers for effective management of epidemics. However, it is crucial to acknowledge that 
deep learning models typically require massive amounts of data and high hardware 
requirements for training, which can be a limiting factor, especially when dealing with 
multimodal features in cloud-based scenarios. 

The revolutionary integration of 5G technology into healthcare has marked a new epoch, 
particularly with the advent of edge computing. This technology stands out for its ability to 
provide low-latency and highly reliable data processing capabilities, which are imperative in 
critical healthcare applications [17]-[20]. One of the salient features of 5G edge computing in 
healthcare is its transformative impact on medical imaging. It has significantly expedited the 
process of image processing and data transmission, ensuring that high-quality medical images 
are readily available to healthcare professionals in real-time. This has not only augmented 
diagnostic precision but also dramatically increased the efficiency of the entire diagnostic 
process, resulting in faster and more reliable patient care [21]. 

Moreover, edge computing has paved the way for the implementation of innovative 
healthcare solutions such as remote patient monitoring and telesurgery [22][23]. These 
applications require Ultra-Reliable Low-Latency Communication (URLLC), which edge 
computing is uniquely positioned to provide. By processing data closer to the source, it ensures 
minimal delay, thereby facilitating real-time decision-making and interventions that could be 
life-saving. 

However, it is imperative to acknowledge the challenges that come with these innovations. 
The consistency of network stability is crucial, especially when dealing with critical healthcare 
applications where any delay or disruption can have dire consequences. Additionally, as 
healthcare data is extremely sensitive, the decentralized nature of edge computing networks 
opens up potential security vulnerabilities. Protecting patient data from unauthorized access 
and ensuring the integrity of the data becomes paramount, and this is an area that requires 
continuous attention and improvement [24]. 

FL has emerged as a pivotal innovation within distributed machine learning, facilitating 
the cooperative training of models across an extensive network of devices while preserving 
the privacy of sensitive data. This revolutionary approach has found applications across a 
diverse range of sectors, from finance [25][26] to industrial Internet of Things (IoT) systems 
[27]-[29], demonstrating its versatility and effectiveness in harnessing decentralized data 
sources for machine learning. Among these applications, the healthcare sector stands out as 
one of the most critical areas where FL is making a significant impact. 
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In healthcare, where the protection of patient confidentiality is of utmost importance, FL 

offers a transformative solution. By enabling the application of FL to electronic health records, 
significant advancements have been made in predictive analytics, leading to the development 
of more personalized and precise treatment plans. This method not only enhances the accuracy 
and effectiveness of medical care but also ensures the protection of patient data, preventing 
any breaches of privacy. The widespread adoption of FL in various domains underscores its 
potential to revolutionize data analysis and machine learning, with the healthcare industry 
benefiting immensely from its ability to safeguard patient information while improving 
treatment outcomes [30][31]. 

In addition to preserving data confidentiality, FL also addresses the critical issue of data 
silos in healthcare. It enables the utilization of diverse datasets from various institutions for 
model training without needing to centralize the data, thereby enhancing the robustness and 
generalizability of the models. This is crucial in a field like healthcare where patient 
populations can vary significantly across different regions and institutions. 

The unprecedented challenges posed by the COVID-19 pandemic necessitate innovative 
and technologically advanced solutions. The integration of FL with edge computing stands out 
as a strategic approach, synergistically harnessing the capabilities of both technologies to 
establish a system that is both responsive and efficient in crisis management. 

By capitalizing on the low-latency and reliable data processing features of edge 
computing, this integration markedly enhances the performance of FL models, especially in 
scenarios that demand real-time responsiveness. Ensuring the promptness and precision of 
insights garnered from these models is imperative, as it underpins informed decision-making, 
a critical component in effectively combating the COVID-19 pandemic. 

 

3. Materials and methods 

3.1 Datasets 

In this study, a real-world COVID-19 dataset was obtained from a hospital in Jiangsu province, 
China. Participants were diagnosed with COVID-19 using RT-PCR detection of SARS-CoV-
2 nucleic acid or serum SARS-CoV-2-specific IgM and IgG antibodies. Severe cases were 
defined based on the criteria outlined in the "COVID-19 Diagnosis and Treatment Scheme 
(Trial Version 6)", which included the following: (1) blood oxygen saturation≤93%, (2) 
respiratory rate≥30 times / minute, and (3) arterial blood oxygen partial pressure (PaO2) / 
oxygen concentration (FiO2)≤300 mmHg. 
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Fig. 1. SHAP values for the top 20 features. 

 
The study conducted a thorough investigation, encompassing a diverse array of variables 

such as demographic details, symptoms, clinical test indicators (inclusive of CT indices), 
disease and treatment specifics, clinical attributes, and pathological factors. The utilization of 
SHapley Additive exPlanations (SHAP) values facilitated an evaluation of the individual 
contributions of features towards the model's efficacy, akin to assessing each player's impact 
on the final outcome in a game scenario. The SHAP values of the top 20 features, identified 
through the highest mean absolute SHAP values, are depicted as an extensive distribution in 
Fig. 1. In this representation, each dataset entry is denoted as a data point for its corresponding 
feature. The x-axis illustrates the feature's directional influence—positive or negative—on the 
model's predictive capability. The color scheme denotes feature values, scaled according to 
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the range observed within the dataset. 

3.2 FL-supported edge computing model 
The preceding introduction underscores the significant potential of 5G in preventing and 
treating COVID-19 across various scenarios, with edge computing playing a pivotal role in 
realizing its unique capabilities. Cloud computing is distant from terminal devices, resulting 
in considerable bandwidth consumption and notable transmission delays. In addition to the 
considerable expenses associated with transmission and delays, edge devices must transmit 
sensitive data to cloud servers for processing, posing potential risks to data confidentiality. 
The concept of edge computing has emerged as a response to the growing need for enhanced 
privacy and cost-effective communication. Through the utilization of distributed computing, 
edge computing facilitates the transfer of computing power to the data collection point, leading 
to decreased data transmission delays, improved user experience, and heightened levels of 
security and privacy. In comparison to cloud computing, edge computing offers the following 
advantages: 1) It reduces bandwidth consumption during transmission by performing small 
transaction fragmentation data processing tasks at the forefront. 2) It ensures data security 
through local processing of privacy-sensitive data. 3) Edge computing enhances system 
robustness, enabling uninterrupted local data computing and transmission even in the presence 
of abnormal external network conditions. 

The concept of FL has made a significant contribution to addressing the challenge of 
preserving user data privacy during machine learning training. By adopting a decentralized 
approach with a centralized server and distributed clients, FL enables collaborative model 
training through the transmission of model parameters. Each data island maintains its original 
data locally, ensuring data privacy throughout the training process, while the centralized server 
enhances model performance by aggregating and sharing the model parameters from the 
distributed clients. The emergence of FL has significantly lowered the barriers to data sharing, 
enabling a broader participation of data owners in the model training process. Additionally, it 
effectively mitigates the risks associated with data leakage and substantially reduces the costs 
associated with data concentration. The specific process of integrating FL and edge computing 
is outlined below. 

In the first step, task initialization is performed. Initially, the cloud defines the training 
objectives and data format for the task, such as predicting the outcomes of hospitalized 
COVID-19 patients. Based on the characteristics of the edge nodes, the FL training process 
and model parameters, including the model parameter weights 𝑃𝑃𝑖𝑖, where 𝑖𝑖 = {0, … ,𝑀𝑀}, are 
determined. Here, 𝑖𝑖 denotes the current iteration round, and when 𝑖𝑖 = 0,  𝑃𝑃0 represents the 
initialized parameters. The number of iterations 𝑀𝑀, the number of all participating nodes 𝑁𝑁 
and local minibatch size 𝐵𝐵  in the training process are also determined. Once these 
specifications are finalized, the cloud distributes the task requirements and model parameters 
to all edge nodes. 

The second step involves edge node training and model updating. Let 𝑛𝑛 = {1,2, … ,𝑁𝑁} 
represent the edge nodes. The cloud randomly selects 𝑛𝑛′  (where 𝑛𝑛′ ≤  𝑁𝑁 ) edge nodes to 
distribute the model parameters. Upon receiving the global model parameters 𝑃𝑃𝑖𝑖, each edge 
node updates its local data to generate model parameters with local characteristics, denoted as 
𝑃𝑃𝑛𝑛𝑖𝑖. The training objective is to minimize the loss function 𝐿𝐿�𝑃𝑃𝑛𝑛𝑖𝑖�. 

 
𝑃𝑃𝑛𝑛𝑖𝑖

∗ = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑛𝑛𝑖𝑖

𝐿𝐿�𝑃𝑃𝑛𝑛𝑖𝑖� (1) 
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The local dataset 𝐷𝐷𝑛𝑛 is initially partitioned into 𝑗𝑗 subsets 𝐵𝐵𝑗𝑗 = {1,2, . . . , 𝑗𝑗},based on local 
minibatch size 𝐵𝐵. For each subset 𝐵𝐵𝑗𝑗, iterate 𝑇𝑇 rounds, updating the parameter 𝑃𝑃𝑛𝑛𝑖𝑖 for each 𝑏𝑏 ∈
𝐵𝐵𝑗𝑗. 

𝑃𝑃𝑛𝑛𝑖𝑖 ← 𝑃𝑃𝑛𝑛𝑖𝑖 − 𝜂𝜂∇𝐿𝐿(𝑃𝑃; 𝑏𝑏) (2) 
 

Where 𝜂𝜂 represents the learning rate, and ∇L represents the gradient. After completing 
the training, each edge node will upload the trained parameters 𝑃𝑃𝑛𝑛𝑖𝑖 to the cloud. 

In the third step, the cloud integrates and updates the parameters. The cloud consolidates 
the parameters uploaded by 𝑛𝑛′ edge nodes and updates the global parameters. At the cloud, the 
optimization objective is to minimize the global loss function 𝐿𝐿(𝑃𝑃𝑖𝑖). 

𝐿𝐿(𝑃𝑃𝑖𝑖) =
1
𝑛𝑛′
�  
𝑛𝑛′

𝑖𝑖=1

𝐿𝐿(𝑃𝑃𝑛𝑛𝑖𝑖) (3) 

 
The cloud aggregates the parameters 𝑃𝑃𝑛𝑛𝑖𝑖 from all edge nodes to compute the new global 

parameter 𝑃𝑃𝑖𝑖+1. 

𝑃𝑃𝑖𝑖+1 =
1

∑  𝑛𝑛∈𝑁𝑁 𝐷𝐷𝑛𝑛
�  
𝑛𝑛′

𝑛𝑛=1

𝐷𝐷𝑛𝑛𝑃𝑃𝑛𝑛𝑖𝑖  (4) 

 
After multiple iterations of steps 2 and 3, the loss function converges or reaches the 

desired objective, signaling the completion of model training. 
 

 
Fig. 2. Framework of FL-supported edge computing model for COVID-19. 

 
As illustrated in Fig. 2, the FL-supported edge computing model distinguishes itself from 

traditional machine learning models by effectively leveraging the advantages of both edge 
computing and FL. By utilizing the computational capabilities of edge nodes for local data 
model training, the system optimizes resource utilization due to each node's limited data 
volume. Additionally, FL's parameter synchronization aligns the computational capabilities of 
local and cloud models, enhancing the delivery of AI services directly at the edge. This 
approach not only significantly reduces system latency and bandwidth consumption but also 
ensures rapid and efficient services for COVID-19 patients. Importantly, with patient data 
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remaining local during model training, privacy concerns are mitigated, encouraging greater 
participation from medical practitioners and thereby enriching the dataset for developing more 
robust models. 

Building upon this foundation, the study meticulously recreated the technological 
environment of various departments within a hospital in Jiangsu Province, China. The 
deployment of the FATE framework on cloud-based virtual machines within a designated 
sandbox environment enabled the analysis of partial COVID-19 case data. This setup 
demonstrated the FL-supported edge computing model's capability for sophisticated data 
analysis and machine learning model training within a secure, decentralized healthcare setting, 
highlighting its potential to revolutionize data-driven decision-making in critical sectors. 

The integration of FATE, a leading collaborative learning platform designed for 
industrial-scale applications, further empowers organizations and institutions to develop 
machine learning models while prioritizing data privacy. Developed by Webank's AI 
department and made open-source in 2019, FATE now contributes to the Linux Foundation 
under the Apache 2.0 license. Its key features include a distributed architecture that supports 
various FL configurations, advanced security protocols for user privacy protection, and 
performance optimization tools for efficient large-scale model training. These attributes make 
FATE an ideal framework for implementing our FL-supported edge computing model, 
reinforcing the model's capabilities in managing complex, privacy-sensitive datasets across 
healthcare and other sectors. 

4. Experiment results 
In this study, the proposed model was compared with seven independent machine learning 
models: SVM, LR, DT, Catboost, Random Forest, Extra Trees, and Ada Boost. This rigorous 
approach was underpinned by clinical data meticulously gathered from a specified hospital in 
Jiangsu Province, China, ensuring that the process adhered to the highest clinical standards. 
The data collection process received rigorous evaluation and approval by the hospital's ethics 
committee, under the ethical approval designation number 2020-SR-106, with all pertinent 
documents related to this clearance submitted as part of the supplementary materials. 

The dataset, comprising data from 303 patients confirmed to have COVID-19 through 
diagnostic methods such as the RT-PCR test and the assay for serum SARS-CoV-2-specific 
IgM and IgG antibodies, was categorized into two groups based on their admission detection 
indicators and initial severity classification: severe outcome (n=132) and mild outcome 
(n=171). These diagnostic approaches ensure a comprehensive identification of infected 
individuals, encompassing both active infections and previous exposure to the virus. 
Furthermore, the classification of severe COVID-19 cases adheres rigorously to the criteria 
outlined in the "COVID-19 Diagnosis and Treatment Scheme (Trial Version 6)", which 
include detailed clinical indicators such as respiratory distress, oxygen saturation levels, and 
other critical parameters. This methodology allows for a precise segmentation of the study 
population based on the severity of their condition, facilitating a nuanced analysis of the 
disease's impact and the effectiveness of various treatment approaches. 
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Fig. 3. F1 score, precision, and AUC comparison of DT, SVM, LR, Catboost, Random Forest, Extra 
Trees, Ada Boost and Proposed model. (a) shows the validation results after training all models on 
edge node 1. (b) shows the validation results after training all models on edge node 2. (c) shows the 

validation results after training all models on edge node 3. (d) shows the validation results after 
training all models on edge node 4. 
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Fig. 4. Average validation results of all models trained on edge nodes 1 to 4 and the proposed model's 

validation on aggregated data from all four nodes. 
 

Fig. 3(a) to (d) comparatively assessed the predictive precision of the machine learning 
models in edge computing environments, including a detailed simulation that evaluated the 
efficacy of the FL-supported model. Additionally, datasets from all nodes were aggregated to 
enhance the proposed model, and its performance was compared against the averaged results 
of the seven models, as depicted in Fig. 4. The assessment used performance metrics such as 
the F1 score, Area Under Curve (AUC), and precision, employing a 5-fold cross-validation 
method to ensure robust evaluation. 

The proposed model exhibited remarkable performance, notably outperforming SVM, 
LR, and DT in precision metrics. Its performance was competitive against sophisticated 
ensemble methods such as Catboost. This demonstrated its efficacy in balancing sensitivity 
and specificity, particularly in the nuanced context of COVID-19 severity classification. 

A critical observation was the proposed model’s exceptional efficacy when leveraging 
the amalgamated dataset from all nodes. It achieved an F1 score of 0.87, precision of 0.78, and 
an AUC of 0.91, highlighting its scalability and adaptability, as well as its enhanced predictive 
performance over both traditional and ensemble classifiers. Further analysis revealed the 
varied performance of models like SVM, LR, and DT across different nodes could be 
attributed to their distinct reactions to the feature space and distribution. For instance, SVM 
and LR may struggle with non-linear separations in high-dimensional spaces, while DT is 
prone to overfitting amidst complex structures. Conversely, ensemble methods, by aggregating 
decisions from multiple weak learners, exhibit superior performance, indicating robust 
handling of data’s complexity and diversity. The standout performance of the proposed model 
in an aggregated setting is likely attributed to the FL framework’s capacity to harness diverse 
datasets without compromising privacy. Its design, tailored for the decentralized nature of edge 
computing, facilitates more generalized representations. 

Model efficacy variations across nodes (E1 to E4) reflect the heterogeneity in data 
structure and distribution, impacting model suitability. The complexity of data structures, 
including feature count, correlation, and non-linear relationships, significantly influences 
model performance. Ensemble models like Catboost and Random Forest excel in managing 
complex, high-dimensional data structures through their aggregate learning approach. 

The primary advantage of the proposed model lies in its ability to enhance data utilization 
efficiency while safeguarding privacy. By processing data locally and sharing only model 
updates, this approach reduces privacy concerns, promoting data sharing among individuals 
and medical entities. This is particularly crucial in addressing global health emergencies like 
COVID-19, where diverse data is essential in developing effective strategies. 



836                                                                          Huang et al.: Edge Computing Model based on Federated Learning  
for COVID-19 Clinical Outcome Prediction in the 5G Era 

Building on the extensive performance evaluation of the proposed model alongside seven 
independent machine learning models, the next phase of the analysis delves into the 
computational complexity. The comparison, based on training times, is summarized in the 
Table 1: 

 
Table 1. Comparative analysis of training times across models 

Model Training Time (s) 
SVM 0.55 
LR 2.5 
DT 0.8 

Catboost 54.1 
Random Forest 38.2 

Extra Trees 34 
Ada Boost 20 

Proposed model 1862 
 
The results indicate that the proposed model, which incorporates privacy-preserving 

technologies such as homomorphic encryption and secure multi-party computation within the 
FATE framework, incurs a significant computational overhead in terms of encrypted data 
communication and computation during the training process. However, it is important to note 
that the overhead associated with these data processing techniques does not scale linearly. The 
distributed nature of the FATE platform can effectively mitigate this overhead, especially 
when handling large datasets. This mitigation strategy significantly narrows the gap in training 
times between the proposed model and other models, underscoring its efficiency and 
feasibility in processing large-scale datasets. 

 
Fig. 5. F1 score, AUC, and precision comparison of proposed model on E1 and E2 
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Table 2. Feature in E1 and E2 
Feature name E1 E2 

Age Yes Yes 
Sex Yes Yes 

Diseases of the endocrine system Yes No 
Cardiovascular disease Yes No 

Respiratory diseases Yes No 
Diseases of the immune system Yes No 

Tumor Yes No 
Fever Yes No 
Cough Yes No 

White blood cell count No Yes 
Systolic pressure No Yes 
Diastolic pressure No Yes 

Temperature No Yes 
Lactate dehydrogenase No Yes 

Blood oxygen saturation No Yes 
High-sensitivity C-reactive proteins No Yes 

Blood sedimentation rate No Yes 
D-dimers No Yes 

Alanine aminotransferases No Yes 
Aspartate aminotransferases No Yes 

ESR No Yes 
∆Changes in lymphocyte count No Yes 

∆Changes in lactate dehydrogenase No Yes 
∆High-sensitivity C-reactive proteins No Yes 

∆Alanine aminotransferases No Yes 
∆Aspartate aminotransferases No Yes 

 
Based on an analysis from some of the authors' experiences treating COVID-19 patients 

on the front lines, it was noted that during the initial outbreak, inconsistencies in medical 
conditions led to variations in the feature data collected by different hospitals (edge nodes). 
For instance, community hospitals, due to limited resources, struggled to provide CT scans for 
patients. Consequently, building predictive models with limited feature data posed a 
significant challenge. This study attempted to integrate edge computing with FL, taking into 
account the use of different features by edge nodes for training and prediction. The dataset was 
divided into two edge nodes, E1 and E2, with only age and gender as overlapping features, as 
shown in Table 2. Such a division not only caters to edge nodes with varying medical 
capabilities but is also applicable to model training scenarios across different countries. Given 
that different countries often adopt varied medical standards, it was challenging to rapidly 
standardize all features during the early stages of the outbreak, resulting in significant feature 
disparities. After dividing into E1 and E2 nodes, 80% of the data was used for training the 
models, while the remaining 20% was allocated for testing. 

Fig. 5 demonstrates the model's performance on the test set, where the "proposed model" 
represents the performance of the model after federated training on the global dataset, while 
"proposed model on E1" indicates the performance after training and prediction on the E1 
dataset alone. Similarly, "proposed model on E2" signifies the model's performance after 
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training and prediction exclusively on the E2 dataset. Fig. 5 illustrates that, despite the 
presence of diverse features, the proposed model maintains performance, resulting in a 
substantial enhancement in the performance of the cloud-based model. Compared to training 
the E1 and E2 nodes separately, the F1 scores for the E1 and E2 nodes increased by 0.05 and 
0.16, respectively, with a corresponding 0.03 improvement in precision. The performance of 
the proposed model tends to improve with the incorporation of more training data, ensuring 
privacy preservation. This contrasts with traditional machine learning models, which often 
suffer from poor generalization due to insufficient training data. In such scenarios, the 
performance of the proposed model surpasses that of traditional machine learning models. 
However, the proposed model's drawback is the bandwidth cost incurred from transmitting 
model parameters. 

In the proposed method, the FL framework utilizes XGBoost as the local algorithm, 
which constructs a model comprising 80 trees, with each tree having a depth and leaf node 
count of 3. The resultant single model approximates a size of 300KB. Considering the 
architecture comprises four sub-nodes, the communication cost for a complete round of 
parameter updates per node is calculated as 300KB * 4 * 2, equating to 2.4MB. Factoring in 
the 78 iterations required for model training, the cumulative communication cost is 187.2MB. 
When evaluated in the context of 5G technology, which is characterized by high data transfer 
rates and minimal latency, this incurred cost is relatively negligible, affirming the 
transmission's feasibility and efficiency. 

5. Conclusion 
In conclusion, the study has successfully demonstrated the potential of integrating 5G 
technology with FL to create a robust predictive model for COVID-19 clinical outcomes. This 
integration not only enhances the precision of patient prognosis during hospitalization but also 
addresses critical privacy concerns by ensuring data remains localized, a feature that is 
particularly valuable in the sensitive healthcare domain. 

The model's ability to generalize across diverse datasets, even in the presence of varying 
node features, underscores its adaptability and resilience in real-world clinical settings. This 
adaptability is further amplified by the use of SHAP values, which streamline the training 
process by identifying influential features, thus reducing computational overhead without 
compromising predictive precision. 

The research contributes to the field of healthcare technology by providing a practical 
solution that can aid healthcare professionals in making informed decisions for early 
intervention and personalized treatment plans. This, in turn, can lead to improved patient 
outcomes and more efficient resource allocation during public health crises. 

Furthermore, the study offers policymakers a powerful tool for developing targeted 
strategies to combat COVID-19 and future pandemics, by providing insights into the 
effectiveness of various treatment approaches based on predictive analytics. 

However, the study's limitations, particularly the challenges posed by data disparities 
among nodes, highlight the importance of future research in data balance and training weight 
optimization. Looking forward, the work paves the way for more sophisticated, efficient, and 
patient-focused healthcare solutions, marking a significant step in the integration of 5G and 
FL in healthcare. 
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