• Title/Summary/Keyword: Primary clay

Search Result 111, Processing Time 0.174 seconds

Geotechnical characteristics and consolidation properties of Tianjin marine clay

  • Lei, Huayang;Feng, Shuangxi;Jiang, Yan
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.125-140
    • /
    • 2018
  • Tianjin, which is located on the west shore of the Bohai Sea, is part of China's Circum-Bohai-Sea Region, where very weak clay is deposited. From the 1970s to the early $21^{st}$ century, Tianjin marine clay deposits have been the subject of numerous geotechnical investigations. Because of these deposits' geological complexity, great depositional thickness, high water content, large void ratio, excessive settlement, and low shear strength, the geotechnical properties of Tianjin marine clay need to be summarized and evaluated based on various in situ and laboratory tests so that Tianjin can safely and economically sustain more infrastructure in the coming decades. In this study, the properties of Tianjin marine clay, especially its consolidation properties, are summarized, evaluated and discussed. The focus is on establishing correlations between the geotechnical property indexes and mechanical parameters of Tianjin marine clay. These correlations include the correlations between the water content and the void ratio, the depth and the undrained shear strength, the liquid limit and the compression index, the tip resistance and the constrained modulus, the plasticity index and the ratio of undrained shear strength and the preconsolidation pressure. In addition, the primary consolidation properties of Tianjin marine clay, such as the intrinsic compression line (ICL), sedimentation compression line (SCL), compression index, $C_c$, coefficient of consolidation, $C_v$, and hydraulic conductivity change index, $C_{kv}$, are evaluated and discussed. A secondary consolidation property, i.e., the secondary compression index, $C_a$, is also investigated, and the results show that the ratio of $C_a/C_c$ for Tianjin marine clay can be used to calculate $C_a$ in secondary consolidation settlement predictions.

Influence of Sewage Sludge Application on Soil Nitrate Distribution in a Clay Soil

  • Lee, Sang-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.70-73
    • /
    • 2003
  • Nitrate contamination in the aquatic systems is the primary indicator of poor agricultural management. The influence of sewage sludge application rates (0, 10, 25, 50 and 100 dry Mg/ha) on distribution of nitrate originating from the sewage sludge in soil profiles was investigated. Soil profile monitoring of nitrate was carried out with a Lakeland clay soil in 1997. Irrespectively of the sewage sludge application rates up to 50 dry Mg/ha, the concentration of $NO_3$-N at the 120 cm depth was below 10 mg/kg and the difference due to the amount of sewage sludge application was negligible at this depth. There was virtually no $NO_3$-N below 120 cm depth and this was confirmed by a deep sampling up to 300 cm depth. Most of the nitrate remained in the surface 60 cm of the soil. Below 120 cm depth nitrate concentration was very low because of the denitrification even at high sewage sludge rate of 100 dry Mg/ha. The $NO_3$-N concentrations in the soil fluctuated over the growing season due to plant uptake and denitrification. The risk of groundwater contamination by nitrate from sewage sludge application up to high rate of 100 dry Mg/ha was very low in a wheat grown clay soil with high water table ( < 3 m).

$C_a/C_c$ for Marine Clay at Southern Part of Korea by Laboratory Consolidation Tests (실내압밀시험에 의한 남해안 해성점토의 $C_a/C_c$)

  • 김규선;임형덕;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.87-98
    • /
    • 1999
  • Consolidation settlements on soft clay are often greatly and potentially damaging to structures. Currently, large-scale projects are in planning or progressing in Korea. These structures will be constructed on both thick and soft clay layers, and so the accurate evaluation of magnitude of settlement is required at every step in design and construction. Especially, secondary compression may play an important role in consolidation settlements of soft clay. Generally, the magnitudes of secondary compression are evaluated by laboratory and in-situ consolidation tests. The empirical $C_a/C_c$ may be economical, fast and powerful tool in estimating secondary consolidation settlement. However, the databases of the $C_a/C_c$ at construction site in Korea are insufficient. The purpose of this study is to investigate the relationship of $C_a/C_c$ on marine clay near the southern sea in Korea. A series of incremental loading consolidation tests (measuring base pore water pressure) is peformed. It was found that the $C_a/C_c$ on undisturbed marine clay is 0.0397.

  • PDF

A Study on Amended Clay Liner by Utilizing Waste Lime (폐석회의 점토차수재로서 활용에 관한 연구)

  • 신은철;김성환
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.29-38
    • /
    • 1998
  • The purpose of this research is to develop an amended clay liner by utilizing waste lime produced as a by-product in chemical industries. Waste lime contains various kinds of organics which affect the permeability, compactability, and unconfined compressive strengths of soil. The geotechnical engineering properties of waste were improved by adding other materials so that they might meet the EPA requirement of clay liner. Granite weathered soil, which is abundant in Korea and can be obtained easily in the field. was used as a primary additive to improve geotechnical engineering properties of waste lime. Various kinds of laboratory tests related to geotecnnical engineering properties, required to evaluate the design criteria for the clay liner in the solid waste landfill. were carried out by changing miRing ratio of waste lime with additive. According to the laboratory test results, in order to obtain the appropriate amended clay liner. the effective miffing ratio of waste lime in granite weathered soil was proved to be about 20~30%.

  • PDF

Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation

  • Wang, Hao;Qi, Xiaohui
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.561-573
    • /
    • 2020
  • The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.

The effect of hydrated lime on the petrography and strength characteristics of Illite clay

  • Rastegarnia, Ahmad;Alizadeh, Seyed Mehdi Seyed;Esfahani, Mohammad Khaleghi;Amini, Omid;Utyuzh, Anatolij Sergeevich
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • In this research, soil samples of the Kerman sedimentary basin, Iran, were investigated through laboratory tests such as petrography (Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF) and X-Ray Diffraction (XRD)), physical and mechanical characteristics tests. The soil in this area is dominantly CL. The petrography results showed that the dominant clay mineral is Illite. This soil has made some problems in the earth dams due to the low shear strength. In this study, a set of samples were prepared by adding different amounts of lime. Next, the petrography and strength tests at the optimum moisture content were performed. The results of SEM analysis showed substantial changes in the soil structure after the addition of lime. The primary structure was porous and granular that was changed to a uniform and solid after the lime was added. According to XRD results, dominant mineral in none stabilized soil and stabilized soil are Illite and calcite, respectively. The pozzolanic reaction resulted in the reduction of clay minerals in the stabilized samples and calcite was known as the soil hardener material that led to an increase in soil strength. An increase in the hydrated lime leads to a decrease in their maximum dry unit weight and an increase in their optimum moisture content. Furthermore, increasing the hydrated lime content enhanced the Unconfined Compressive Strength (UCS) and soil's optimum moisture. An increase in the strength is significantly affected by the curing time and hydrated lime contents, as the maximum compressive strength is achieved at 7% hydrated lime. Moreover, the maximum increase in the California Bearing Ratio (CBR) achieved in clay soils mixed with 8% hydrated lime.

The Study on Determination of the Coefficient of Terzaghi's Consolidation by Curve Fitting (Curve Fittig에 의한 Terzaghi의 압밀계수 산정방법 연구)

  • Kim, Chan Sik;Eam, Sung Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.101-107
    • /
    • 2014
  • It has been known that Terzaghi's consolidation theory is not well consistent with the consolidation phenomenon on the soft clay ground, but this theory has still been adopted normally in practice because there is no method for estimating the consolidation settlement and rate easier than Terzaghi's theory. It is impossible to map whole part of consolidation settlement vs time curve to the curve of Terzaghi'z average degree of consolidation. If the primary consolidation and the secondary compression are happened same time, it would be useless of trying to find the end of primary consolidation, but it is needed for using Terzaghi's theory that the end of consolidation is determined to the time of beginning consistency between the final settlement analyzed with curve fitting and the experimented consolidation settlement.

A Consolidation Settlement Prediction Considering Primary and Secondary Consolidation (1차와 2차 침하를 고려한 압밀침하량 예측)

  • Lee, Dal-Won;Jeong, Seong-Gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.61-68
    • /
    • 2005
  • In this study, it was proposed that an equation for predicting consolidation settlement on soft clay ground, which separate total settlement into primary and secondary consolidation settlement equation. The consolidation settlements by the proposed equation and by the measured settlements from laboratory model test were compared and verified for its application. It was appeared that the proposed equation from the laboratory model test approach to be more realistic comparing to !the result of Terzaghi's equation. From the above application, it was concluded that the final settlement prediction by. the Hyperbolic, Asaoka methods is needed to the initial settlement but the proposed equation could be much applicable in the lacking condition of measured data of the initial period.

Case Study on Failure of Rock Slope Caused by Filling Material of Clay (점토 충전물에 의한 암반사면 파괴사례 연구)

  • Kim, Yong-Jun;Lee, Young-Huy;Kim, Sun-Ki;Kim, Ju-Hwa
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.368-376
    • /
    • 2006
  • After heavy rainfall, It was occurred massive plane failure along bedding plane of shale in the center of rock slope. It was observed filling material and trace of underground water leakage around of the slope. We tried to find the cause for slope failure, and the result of examination showed that primary factors of the failure were low shear strength of clay filling material and water pressure formed within tension crack existed in the top of the slope. In this research, in order to examine the features of shear strength of filled rock joint, shear test of filled rock joint was conducted using of artificial filling material such as sand and clay..Also we made an investigation into the characteristics of shear strength with different thickness of filling materials.

A Case-study of Compression Index Prediction on Very Soft Clay (초연약 점토지반 압축지수 추정에 관한 연구)

  • Kim, Byeong-Kyu;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.13-18
    • /
    • 2015
  • Considering dredged ground is consolidated more than one meter, Compression index prediction is very important. But, UD-sampling and consolidation test are impossible because of high moisture content and weak shear strength. This paper demonstrates the compression index relation, $C_{c(d)}=F(e_d,C_c)$, between in-situ and dredged clay using N. Keith Tovey's Omega point and soil physical properties. Good relationship is confirmed between proposed formula and measured primary consolidation result on dredged ground in The Republic of Korea.