DOI QR코드

DOI QR Code

Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation

  • Wang, Hao (Department of Civil Engineering, Tsinghua University) ;
  • Qi, Xiaohui (School of Civil and Environmental Engineering, Nanyang Technological University)
  • Received : 2020.08.20
  • Accepted : 2020.12.16
  • Published : 2020.12.25

Abstract

The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.

Keywords

Acknowledgement

This work was supported by National Science Foundation of China (NSFC, grant number: 51778338) and the 7th Framework Program for Research of European Commission (grant number: 612665).

References

  1. Au, F.T.K. and Du, J.S. (2004), "Prediction of ultimate stress in un-bonded prestressed tendons", Mag. Concrete Res., 56(1), 1-11. https://doi.org/10.1680/macr.2004.56.1.1.
  2. Abuel-Naga, H.M., Bergado, D.T. and Bouazza, A. (2007a), "Thermally induced volume change and excess pore water pressure of soft Bangkok clay", Eng. Geol., 89(1-2), 144-154. https://doi.org/10.1016/j.enggeo.2006.10.002.
  3. Abuel-Naga, H.M., Bergado, D.T., Bouazza, A. and Ramana, G.V. (2007b), "Volume change behaviour of saturated clays under drained heating conditions: Experimental results and constitutive modeling", Can. Geotech. J., 44(8), 942-956. https://doi.org/10.1139/t07-031.
  4. Abuel-Naga, H.M., Bergado, D.T., Ramana, G.V., Grino, L., Rujivipat, P. and Thet, Y. (2006), "Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature", J. Geotech. Geoenviron. Eng., 132(7), 902-910. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(902).
  5. Bai, B. and Shi, X. (2017), "Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading", Geomech. Eng., 12(4), 707-721. http://doi.org/10.12989/gae.2017.12.4.707.
  6. Baldi, G., Hueckel, T. and Pellegrini, R. (1988), "Thermal volume changes of the mineral-water system in low-porosity clay soils", Can. Geotech. J., 25(4), 807-825. https://doi.org/10.1139/t88-089.
  7. Brandl, H. (2006), "Energy foundations and other thermo-active ground structures", Geotechnique, 56(2), 81-122. https://doi.org/10.1680/geot.2006.56.2.81.
  8. Cekerevac, C. and Laloui, L. (2004), "Experimental study of thermal effects on the mechanical behaviour of a clay", Int. J. Numer. Anal. Meth. Geomech., 28(3), 209-228. https://doi.org/10.1002/nag.332.
  9. Cui, W., Tsiampousi, A., Potts, D.M., Gawecka, K.A. and Zdravkovic, L. (2020), "Numerical modeling of time-dependent thermally induced excess pore fluid pressures in a saturated soil", J. Geotech. Geoenviron. Eng., 146(4), 04020007. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002218.
  10. Cui, Y.J., Sultan, N. and Delage, P. (2000), "A thermomechanical model for clays", Can. Geotech. J., 37(3), 607-620. https://doi.org/10.1139/t99-111.
  11. Derjaguin, B.V., Churaev, N.V. and Muller, V.M. (1987), Surface Forces, Plenum Publishing Corporation, New York, U.S.A.
  12. Di Donna, A. and Laloui, L. (2015a), "Response of soil subjected to thermal cyclic loading: Experimental and constitutive study", Eng. Geol., 190, 65-76. https://doi.org/10.1016/j.enggeo.2015.03.003.
  13. Di Donna, A. and Laloui, L. (2015b), "Numerical analysis of the geotechnical behaviour of energy piles", Int. J. Numer. Anal. Meth. Geomech., 39(8), 861-888. https://doi.org/10.1002/nag.2341.
  14. Garcia-Garcia, S., Jonsson, M. and Wold, S. (2006), "Temperature effect on the stability of bentonite colloids in water", J. Colloid Interf. Sci., 298(2), 694-705. https://doi.org/10.1016/j.jcis.2006.01.018.
  15. Guvanasen, V. and Chan, T. (2000), "A three-dimensional numerical model for thermohydromechanical deformation with hysteresis in a fractured rock mass", Int. J. Rock Mech. Min. Sci., 37(1-2), 89-106. https://doi.org/10.1016/S1365-1609(99)00095-7.
  16. Hiebl, M. and Maksymiw, R. (1991), "Anomalous temperature dependence of the thermal expansion of proteins", Biopolymers, 31(2), 161-167. https://doi.org/10.1002/bip.360310204.
  17. Hueckel, T. and Borsetto, M. (1990), "Thermoplasticity of saturaed clays: Experimentals constitutive study", J. Geotech. Eng., 116(12), 1778-1796. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1778).
  18. Hueckel, T. and Pellegrini, R. (1992), "Effective stress and water-pressure in saturated clays during heating-cooling cycles", Can. Geotech. J., 29(6), 1095-1102. https://doi.org/10.1139/t92-126.
  19. Jiang, Y. and Liu, M. (2007), "From elasticity to hypoplasticity: Dynamics of granular solids", Phys. Rev. Lett., 99(10), 105501. https://doi.org/10.1103/PhysRevLett.99.105501.
  20. Jiang, Y. and Liu, M. (2009), "Granular solid hydrodynamics", Granul. Matter, 11(3), 139-156. https://doi.org/10.1007/s10035-009-0137-3.
  21. Johnson, K.L. (1987), Contact Mechanics, Cambridge University Press, Cambridge, U.K.
  22. Laloui, L. and Francois, B. (2009), "ACMEG-T: Soil thermoplasticity model", J. Eng. Mech., 135(9), 932-944. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000011.
  23. Li, C., Kong, G., Liu, H. and Abuel-Naga, H. (2019), "Effect of temperature on behaviour of red clay-structure interface", Can. Geotech. J., 56(1), 126-134. https://doi.org/10.1139/cgj-2017-0310.
  24. Li, H., Long, J., Xu, Z. and Masliyah, J.H. (2007), "Flocculation of kaolinite clay suspensions using a temperature-sensitive polymer", AIChE J., 53(2), 479-488. https://doi.org/10.1002/aic.11073.
  25. Li, Y., Dijkstra, J. and Karstunen, M. (2018), "Thermomechanical creep in sensitive clays", J. Geotech. Geoenviron. Eng., 144(11), 1-11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001965.
  26. Mitchell, J.K. (1993), Fundamentals of Soil Behavior, John Wiley, New York, U.S.A.
  27. Morinl, R. and Silva, A. (1984), "The effects of high pressure and high temperature on some physical properties of ocean sediments", J. Geophys. Res., 89(3), 511-526. https://doi.org/10.1029/JB089iB01p00511.
  28. Osipov, V.I.V. (2012), "Nanofilms of adsorbed water in clay: Mechanism of formation and properties", Water Resour., 39(7), 709-721. https://doi.org/10.1134/S009780781207010X.
  29. Plum, R.L. and Esrig, M.I. (1969), "Some temperature effects on soil compressibility and pore water pressures", Proceedings of the 48th Annual Meeting of the Highway Research Board.
  30. Song, Z., Hao, Y. and Liu, H. (2020), "Analytical study of the thermo-osmosis effect in porothermoelastic responses of saturated porous media under axisymmetric thermal loadings", Comput. Geotech., 123, 103576. https://doi.org/10.1016/j.compgeo.2020.103576.
  31. Stewart, M.A. and McCartney, J.S. (2014), "Centrifuge modeling of soil-structure interaction in energy foundations", J. Geotech. Geoenviron. Eng., 140(4), 04013044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001061.
  32. Sultan, N., Delage, P. and Cui, Y.J. (2002), "Temperature effects on the volume change behaviour of Boom clay", Eng. Geol., 64(2-3), 135-145. https://doi.org/10.1016/S0013-7952(01)00143-0.
  33. Suvorov, A.P. and Selvadurai, A.P.S. (2009), "THM processes in a fluid-saturated poroelastic geomaterial: Comparison of analytical results and computational estimates", Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto, Canada, May.
  34. Tamizdoust, M.M. and Ghasemi-Fare, O. (2020), "A fully coupled thermo-poro-mechanical finite element analysis to predict the thermal pressurization and thermally induced pore fluid flow in soil media", Comput. Geotech., 117, 103250. https://doi.org/10.1016/j.compgeo.2019.103250.
  35. Towhata, I., Kuntiwattanaku, P., Seko, I. and Ohishi, K. (1993), "Volume change of clays induced by heating as observed in consolidation tests", Soils Found., 33(4), 170-183. https://doi.org/10.3208/sandf1972.33.4_170.
  36. Vega, A. and McCartney, J.S. (2015), "Cyclic heating effects on thermal volume change of silt", Environ. Geotech., 2(5), 257-268. https://doi.org/10.1680/envgeo.13.00022.
  37. Villar, M.V. and Lloret, A. (2004), "Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite", Appl. Clay Sci., 26(1-4), 337-350. https://doi.org/10.1016/j.clay.2003.12.026.
  38. Wang, H. (2018), "Research on multi-scale and multi-field thermodynamic constitutive model and its finite element implementation for saturated geomaterials", Ph.D. Dissertation, Tsinghua University, Beijing, China.
  39. Wang, H. and Cheng, X. (2017), "A thermodynamic model for rate-dependent geomaterials", Proceedings of the Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS), Villars-sur-Ollon, Switzerland, January.
  40. Xu, S., Scherer, G.W., Mahadevan, T.S. and Garofalini, S.H. (2009), "Thermal expansion of confined water", Langmuir, 25(9), 5076-5083. https://doi.org/10.1021/la804061p.
  41. Zhang, F. and Kurimoto, Y. (2016), "How to model the contractive behavior of soil in a heating test", Undergr. Sp., 1(1), 30-43. https://doi.org/10.1016/j.undsp.2016.05.001.
  42. Zhang, Z.C. and Cheng, X.H. (2016), "A thermo-mechanical coupled constitutive model for clay based on extended granular solid hydrodynamics", Comput. Geotech., 80, 373-382. https://doi.org/10.1016/j.compgeo.2016.05.010.
  43. Zhang, Z. and Cheng, X. (2017), "A fully coupled THM model based on a non-equilibrium thermodynamic approach and its application", Int. J. Numer. Anal. Meth. Geomech., 41(4), 527-554. https://doi.org/10.1002/nag.2569.
  44. Zhou, C. and Ng, C.W.W. (2018), "A new thermo-mechanical model for structured soil", Geotechnique, 68(12), 1109-1115. https://doi.org/10.1680/jgeot.17.T.031.
  45. Zhu, Q.Y., Jin, Y.F., Shang, X.Y. and Chen, T. (2019), "A 1D model considering the combined effect of strain-rate and temperature for soft soil", Geomech. Eng., 18(2), 133-140. http://doi.org/10.12989/gae.2019.18.2.133.
  46. Zymnis, D.M., Whittle, A.J. and Cheng, X. (2015), "TTS model for thermo-mechanical behavior of clay", Proceedings of the XVI European Conference on Soil Mechanics and Geotechnical Engineering, Edinburgh, Scotland, U.K., September.
  47. Zymnis, D.M., Whittle, A.J. and Cheng, X. (2018a), "Simulation of long-term thermo-mechanical response of clay using an advanced constitutive model", Acta Geotech., 14(2), 295-311. https://doi.org/10.1007/s11440-018-0726-6.
  48. Zymnis, D.M., Whittle, A.J. and Germaine, J.T. (2018b), "Measurement of temperature-dependent bound water in clays", Geotech. Test. J., 42(1), 232-244. https://doi.org/10.1520/GTJ20170012.