• Title/Summary/Keyword: Preventive cost

Search Result 619, Processing Time 0.023 seconds

Preventive maintenance policy following the expiration of replacement-repair warranty (교체-수리보증이 종료된 이후의 예방보전정책)

  • Jung, Ki-Mun
    • Journal of Applied Reliability
    • /
    • v.12 no.2
    • /
    • pp.57-66
    • /
    • 2012
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of replacement-repair warranty. Under this preventive maintenance model, we derive the expressions for the expected cycle length, the expected total cost and the expected cost rate per unit time. Also, we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

Determination of the Resetting Time to the Process Mean Shift based on the Cpm+ (Cpm+ 기준에서의 공정평균이동에 대한 재조정 기간 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.110-117
    • /
    • 2018
  • Machines and facilities are physically or chemically degenerated by continuous usage. One of the results of this degeneration is the process mean shift. By the result of degeneration, non-conforming products and malfunction of machine occur. Therefore a periodic preventive resetting the process is necessary. This type of preventive action is called 'preventive maintenance policy.' Preventive maintenance presupposes that the preventive (resetting the process) cost is smaller than the cost of failure caused by the malfunction of machine. The process mean shift problem is a field of preventive maintenance. This field deals the interrelationship between the quality cost and the process resetting cost before machine breaks down. Quality cost is the sum of the non-conforming item cost and quality loss cost. Quality loss cost is due to the deviation between the quality characteristics from the target value. Under the process mean shift, the quality cost is increasing continuously whereas the process resetting cost is constant value. The objective function is total costs per unit wear, the decision variables are the wear limit (resetting period) and the initial process mean. Comparing the previous studies, we set the process variance as an increasing concave function and set the quality loss function as Cpm+ simultaneously. In the Cpm+, loss function has different cost coefficients according to the direction of the quality characteristics from target value. A numerical example is presented.

Optimal Schedules of Periodic Preventive Maintenance Model with Different PM Effect

  • Lim, Jae-Hak
    • International Journal of Reliability and Applications
    • /
    • v.9 no.1
    • /
    • pp.113-122
    • /
    • 2008
  • In this paper, we consider a periodic preventive maintenance policy in which each preventive maintenance reduces the hazard rate of amount proportional to the failure intensity, which increases since the system started to operate. And the effect of preventive maintenance at each preventive maintenance epoch is different. The expected cost rate per unit time for the proposed model is obtained. We discuss the optimal number N of the periodic preventive maintenance and the optimal period x, which minimize the expected cost rate per unit time and obtain the optimal preventive maintenance schedule for given cost structures of the model. A numerical example is given for the purpose of illustrating our results when the failure time distribution is Weibull distribution.

  • PDF

Preventive Maintenance Policy Following the Expiration of Extended Warranty Under Replacement-Repair Warranty (교체-수리보증 하에서 연장된 보증이 종료된 이후의 예방보전정책)

  • Jung, Ki Mun
    • Journal of Applied Reliability
    • /
    • v.14 no.2
    • /
    • pp.122-128
    • /
    • 2014
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of extended warranty under replacement-repair warranty. Under the replacement-repair warranty, the failed system is replaced or minimally repaired by the manufacturer at no cost to the user. Also, under extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user during the original extended warranty period. As a criterion of the optimality, we utilize the expected cost rate per unit time during the life cycle from the user's perspective. And then we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

Periodic Preventive Maintenance Policies when Minimal Repair Costs Vary at Failures

  • Joon Keun Yum;Gi Mun Jung;Dong Ho Park
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.3
    • /
    • pp.86-95
    • /
    • 1997
  • This paper considers a repairable system, which is maintained preventively at periodic times and is minimally repaired at each failure. Most preventive maintenance policies for such repairable systems assume that the cost of minimal repair is constant regardless of its age at failure. However, it is more practical to consider the situations where the cost of minimal repair is dependent not only on its age at failue, but also on the number of preventive maintenance carried out prior to its failure. We consider the preventive maintenance carried out prior to its failure. We consider the preventive maintenance policy with age-dependent minimal repair cost. The optimal policies which minimize the expected cost rate over an infinite time span are discussed. We obtain the optimal period and number of preventive maintenance prior to replacement of the system.

  • PDF

Developing a Non-Periodic Preventive Maintenance Model Guaranteeing the Minimum Reliability (최소 신뢰도를 보장하는 비 주기적 예방보전 모형 개발)

  • Lee, Juhyun;Ahn, Suneung
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.104-113
    • /
    • 2018
  • Purpose: This paper proposes the non-periodic preventive maintenance policy based on the level of cumulative hazard intensity. We aim to construct a cost-effectiveness on the proposed model with relaxing the constraint on reliability. Methods: We use the level of cumulative hazard intensity as a condition variable, instead of reliability. Such a level of cumulative hazard intensity can derive the reliability which decreases as the frequency of preventive maintenance action increases. We also model the imperfect preventive maintenance action using the proportional age setback model. Conclusion: We provide a numerical example to illustrate the proposed model. We also analyze how the parameters of our model affect the optimal preventive maintenance policy. The results show that as long as high reliability is guaranteed, the inefficient preventive maintenance action is performed reducing the system operation time. Moreover, the optimal value of the proposed model is sensitive to changes in preventive maintenance cost and replacement cost.

Developing a Decision-Making Model to Determine the Preventive Maintenance Schedule for the Leased Equipment (대여 장비의 예방정비 일정 결정을 위한 의사 결정 모델 개발)

  • Lee, Ju-hyun;Bae, Ki-ho;Ahn, Sun-eung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.24-31
    • /
    • 2018
  • As a system complexity increases and technology innovation progresses rapidly, leasing the equipment is considered as an important issue in many engineering areas. In practice, many engineering fields lease the equipment because it is an economical way to lease the equipment rather than to own the equipment. In addition, as the maintenance actions for the equipment are costly and need a specialist, the lessor is responsible for the maintenance actions in most leased contract. Hence, the lessor should establish the optimal maintenance strategy to minimize the maintenance cost. This paper proposes two periodic preventive maintenance policies for the leased equipment. The preventive maintenance action of policy 1 is performed with a periodic interval, in which their intervals are the same until the end of lease period. The other policy is to determine the periodic preventive maintenance interval minimizing total maintenance cost during the lease period. In addition, this paper presents two decision-making models to determine the preventive maintenance strategy for leased equipment based on the lessor's preference between the maintenance cost and the reliability at the end of lease period. The structural properties of the proposed decision-making model are investigated and algorithms to search the optimal maintenance policy that are satisfied by the lessor are provided. A numerical example is provided to illustrate the proposed model. The results show that a maintenance policy minimizing the maintenance cost is selected as a reasonable decision as the lease term becomes shorter. Moreover, the frequent preventive maintenance actions are performed when the minimal repair cost is higher than the preventive maintenance cost, resulting in higher maintenance cost.

Cost optimization for periodic PM policy

  • Jung, Ki-Mun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.73-78
    • /
    • 2005
  • This paper considers a preventive maintenance policy following the expiration of renewing warranty, Most preventive maintenance models assume that each PM costs a fixed predetermined amount regardless of the effectiveness of each PM. However, it seems more reasonable to assume that the PM cost depends on the degree of effectiveness of the PM activity. In this paper we consider a periodic preventive maintenance policy following the expiration of renewing warranty when the PM cost is an increasing function of the PM effect. The optimal number and period for the periodic PM policy with effect dependent cost that minimize the expected cost rate per unit time over an infinite time span are obtained.

  • PDF

Survey of Corrosion Cost in China and Preventive Strategies

  • Ke, Wei;Li, Zhiqiang
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.259-264
    • /
    • 2008
  • A national consultative project entitled "corrosion cost survey in China and preventive strategies" was funded by the Chinese Academy of Engineering in 1998. Soon afterwards, an expert group was organized jointly by the Institute of Metal Research, CAS and Chinese Society of Corrosion and Protection. The report on corrosion cost survey in China was published in 2003. According to this report the overall annual corrosion cost in China estimated by the Uhlig Method and Hoar Method at 1997-2001 was found to be 200.7 billion Yuan RMB and 228.8 billion Yuan RMB respectively, which is equivalent to 2% of the gross national product of China. However the total cost of corrosion including the direct and indirect cost was estimated to be more than 500 billion Yuan RMB per year in China. Among them, corrosion cost of infrastructure ranked in first comparing with other sectors. Although corrosion costs in some sectors, such as electric power, petrochemical, oil pipeline and railway in China has reduced in the past years, significant losses are still being encountered in most sectors of industries and cost-effective methods have not always been implemented. Both successful and unsuccessful cases in corrosion control and corrosion management were collected. As the investment in capital construction continues increasing rapidly in China, the maintenance and life extension of the infrastructures will become a big issue. The preventive strategies have been suggested

Changes in treatment behavior and cost according to the operation of preventive dentistry in university dental hospital (대학치과병원 예방치과운영 전·후의 환자진료행태와 진료비용 변화)

  • Hong, Hyo-Kyoung;Choi, Seong-Woo
    • Journal of Korean society of Dental Hygiene
    • /
    • v.20 no.5
    • /
    • pp.707-716
    • /
    • 2020
  • Objectives: This study aims to provide basic data for high-quality dental services. In addition, we will promote the operation of preventive dentistry that implements preventive measures. It was conducted to study the change of patient's treatment behavior and treatment cost due to the discontinuation of preventive dentistry in university dental hospitals. Methods: This study collected data using the integrated medical information system of the C University Dental Hospital. From September 1, 2017 to August 31, 2019, data were analyzed using frequency, percentage, mean, standard deviation, chi-square test using SPSS version 24.0 statistical program, and T-test. Results: There was a significant difference in the number of preventive dental treatment cases from 58.3% of preventive dental operation periods to 41.7% of preventive dental operation periods. As a result of comparing the medical expenses, the total medical expenses during the preventive dental operation period decreased from 521,308,872 won to 379,724,995 won during the discontinuation period, 141,583,877 won. The number of medical treatments by treatment behavior decreased 3,835 (28.4%) from a total of 13,520 preventive dental operation periods to 9,685. Conclusions: This study is meaningful as the first study to confirm the change in the treatment behavior and the change in the cost of treatment due to the discontinuation of the operation of preventive dentistry at university dental hospitals. In conclusion, it is thought that there is a possibility of the lack of accessibility and the limitation of professional preventive care due to the discontinuation of preventive dentistry.