• Title/Summary/Keyword: Pretwisted Angle

Search Result 10, Processing Time 0.021 seconds

Vibration Control of Rotating Composite Thin-Walled Pretwisted Beam with Non-uniform Cross Section (초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어)

  • 임성남;나성수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.944-949
    • /
    • 2003
  • This paper addresses the control of free and dynamic response of composite rotating pretwisted blade modeled as non-uniform thin-walled beam fixed at the certain presetting and pretwisted angle and incorporating piezoelectric induced damping capabilities. A distributed piezoelectric actuator pair is used to suppress the vibrations caused by external disturbances. The blade model incorporates non-uniform features such as transverse shear, secondary warping and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration and dynamic characteristics of the blade are highlighted.

  • PDF

Vibration analysis of a pretwisted rotating blade with a concentrated mass (집중질량과 초기 비틀림각을 갖는 회전블레이드의 진동해석)

  • Kwak, Joo-Young;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.190-197
    • /
    • 1998
  • Equations of motions of a pretwisted rotating blade with a concentrated mass in an arbitrary position are derived. The flapwise and chordwise equations are coupled to each other due to the pretwist angle of the blade. As the angular speed, hub radius ratio, pretwist angle and concentrated mass vary, the vibration characteristics of the blade change. It is found that eigenvalue lociveering phenomena occur between two closing loci due to the pretwist angle. The effect of the pretwist angle on the critical angular speed and location of the concentrated mass on the natural frequencies are also investigated.

Bending Vibration of a Pretwisted Rotating Cantilever Beam (초기 비틀림각을 갖는 회전 외팔보의 굽힘 진동)

  • Park, Jung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2174-2181
    • /
    • 1996
  • Equations of chordwise and flapwise bending motions of pretwisted rotatin cantilever beams are derived. The two motions are coupled to each other due to the pretwist angle of the beam cross section. As the angular speed, hub radius ratio, and pretwist angle vary, the vibration characteristics of the beam change. It is found that engenvalue loci veering phenomena and associated mode shape variations occur between two vibration modes due to the pretwist angle. The effect of the pretwist angle on the critical angular speed is also investigated.

Vibration Control of Pretwisted Composite Thin-walled Rotating Beam with Non-uniform Cross Section (초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어)

  • 임성남;나성수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.486-494
    • /
    • 2004
  • This paper addresses the dynamic modeling and closed-loop eigenvibration analysis of composite rotating pretwisted fan blade modeled as non-uniform thin-walled beam with bi-convex cross-section fixed at the certain presetting angle and incorporating piezoelectric induced damping capabilities. The blade model incorporates non-classical features such as transverse shear, rotary inertia and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration of the blade are highlighted.

Theory of Thin-Walled, Pretwisted Composite Beams with Elastic Couplings

  • Jung, Sung-Nam;Kim, Chang-Joo;Ko, Jin-Hwan;Kim, Chang-Wan
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.105-119
    • /
    • 2009
  • In this work, the structural response of thin-walled composite beams with pretwist angle is investigated by using a mixed beam approach that combines the stiffness and flexibility methods in a unified manner. The Reissner's semi-complimentary energy functional is used to derive the stiffness matrix that approximates the beam in an Euler-Bernoulli level for extension and bending and Vlasov level for torsion. The bending and torsion-related warpings induced by the pretwist effects are derived in a closed form. The developed theory is validated with available literature and detailed finite element structural analysis results using the MSC/NASTRAN. Pretwisted composite beams with rectangular solid and thin-walled box sections are illustrated to validate the current approach. Acceptable correlation has been achieved for cases considered in this study. The effects of pretwist and fiber orientation angles on the static behavior of pretwisted composite beams are also studied.

Active Vibrational Control of Pretwisted Rotating Composite Beams (초기 비틀림각을 갖는 복합재료 회전보의 능동진동제어)

  • O, Sang-Yong;Song, O-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.667-673
    • /
    • 2000
  • A number of issues related with the vibrational behavior of pretwisted rotating beams featuring anisotropic properties and incorporating adaptive capabilities are considered in this paper. The adaptive capabilities are provided by a system of piezoactuators bonded or embedded into the structure. Based on the converse piezoelectric effect and on the out of phase activation, boundary control moments are pizoelectrically induced at the beam tip. A feedback control law relating the induced bending moments with the kinematical response quantities appropriately selected is used, and its beneficial effects, considered in conjunction with that of the beam anisotropy and structural pretwist upon the eigenvibration characteristics are highlighted

  • PDF

Thermal Effect on the Vibration Characteristics of Pretwisted Rotating Blade (열 효과를 고려한 비틀림이 있는 회전 블레이드의 진동 특성)

  • Kee, Young-Jung;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.810-815
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of this study. In the present work, general formulation is proposed to analyze the rotating shell-type structures including the effect of centrifugal force, Coriolis acceleration and initial twist. Furthermore, simplified equations are derived for the case of an open circular cylindrical shell. Based on the concept of degenerated shell element with the Reissner-Mindlin's assumptions, the finite element method is adopted for solving the governing equations. In addition, it is investigated the effect of thermal load on the vibration characteristics of pretwisted blade. Numerical results are summarized for the various parameters such as rotating speed, angle of pretwist and stacking sequence of a composite blade. Also, present results are compared with the previous works and experimental data.

  • PDF

Assessment of Voigt and LRVE models for thermal shock analysis of thin FGM blade: A neutral surface approach

  • Ankit Kumar;Shashank Pandey
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.105-118
    • /
    • 2023
  • The present work is an attempt to develop a simple and accurate finite element formulation for the assessment of thermal shock/thermally induced vibrations in pretwisted and tapered functionally graded material thin (FGM) blades obtained from Voigt and local representative volume elements (LRVE) homogenization models, based on neutral surface approach. The neutral surface of the FGM blade does not coincide with its mid-surface. A finite element model (FEM) is developed using first-order shear deformation theory (FSDT) and the FGM turbine blade is modelled according to the shallow shell theory. The top and the bottom layers of the FGM blade are made of pure ceramic and pure metal, respectively and temperature-dependent material properties are functionally graded in the thickness direction, the position of the neutral surface also depends on the temperature. The material properties are estimated according to two different homogenization models viz., Voigt or LRVE. The top layer of the FGM blade is subjected to high temperature and the bottom surface is either thermally insulated or kept at room temperature. The solution of the nonlinear profile of the temperature in the thickness direction is obtained from the Fourier law of heat conduction in the unsteady state. The results obtained from the present FEM are compared with the benchmark examples. Next, the effect of angle of twist, intensity of thermal shock, variable chord and span and volume fraction index on the transient response due to thermal shock obtained from the two homogenization models viz., Voigt and LRVE scheme is investigated. It is shown that there can be a significant difference in the transient response calculated by the two homogenization models for a particular set of material and geometric parameters.

Structural Behavior of Thin-Walled, Pretwisted Composite Beams (초기 비틀림 각을 갖는 박벽 복합재료 보의 정적 거동 해석)

  • Park, Il-Ju;Hong, Dan-Bi;Jung, Sung-Nam
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.15-20
    • /
    • 2007
  • In this work, the structural response of thin-walled, composite beams with built-in twist angles is analyzed using a mixed beam approach. The analytical model includes the effects of elastic couplings, shell wall thickness, and torsion warping. Reissner's semi-complimentary energy functional is used to describe the beam theory and also to deal with the mixed-nature in the beam kinematics. The bending and torsion related warpings introduced by the non-zero pretwist angles are derived in closed-form through the proposed beam formulation. The theory is validated with available literature and detailed finite element analysis results for rectangular solid section beams with elastic couplings. Very good correlation has been obtained for the cases considered.