• Title/Summary/Keyword: Pressure monitoring system

Search Result 541, Processing Time 0.031 seconds

Development of Pressure Monitoring System Using Silicon Pressure Sensor (실리콘 압력센서를 이용한 압력 모니터링 시스템 개발)

  • Lee, Young Tae;Kwon, Ik Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.76-79
    • /
    • 2018
  • In this paper, we developed a pressure monitoring system using silicon pressure sensor. The pressure monitoring system was developed on the basis of a microcontroller, and a self-developed silicon pressure sensor was applied. The pressure monitoring system outputs the current pressure value via UART communication. In addition, it includes a function of displaying by LED when the preset three-step pressure (low, medium, high pressure) is reached. The silicon pressure sensor used in the pressure monitoring system was set to 0 kPa, 10 kPa, 26 kPa, and the pressure monitoring system was evaluated because the measured maximum pressure was in the range of 100 kPa.

Pressure Monitoring System in Gastro-Intestinal Track (소화기관내의 압력 모니터링 시스템)

  • 김용인;박석호;김병규;박종오
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1089-1094
    • /
    • 2004
  • Diseases in the gastro-intestinal track are on an increasing trend. In order to diagnose a patient, the various signals of the digestive organ, such as temperature, pH, and pressure, can offer the helpful information. Among the above mentioned signals, we choose the pressure variation as a monitoring signal. The variation of a pressure signal of the gastro-intestinal track can offer the information of a digestive trouble or some clues of the diseases. In this paper, a pressure monitoring system for the digestive organs of a living pig is presented. This system concept is to transmit the measured biomedical signals from a transmitter in a living pig to wireless receiver that is positioned out of body. The integrated solution includes the following parts: (1) the swallow type pressure capsule, (2) the receiving set consisting of a receiver, decoder box, and PC. The merit of the proposed system if that the monitoring system can supply the precise and repeatable pressure in the gastro-intestinal track. In addition, the design of low power consumption enables it to keep sending reliable signals while the pressure capsule is working in the digestive organ. The subject of the study for the pressure monitoring system is in-vivo experiments for a living pig. We achieved the pressure tracings in digestive organs and verified the validity of system after several in-vivo tests using pressure monitoring system. As a result, we found each organ has its own characterized pressure fluctuation.

Pressure Monitoring System in Gastro-Intestinal Tract

  • Kim, Byung-Kyu;Kim, Yong-In;Park, Suk-Ho;Jo, Jin-Ho;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.196-201
    • /
    • 2005
  • Diseases in the gastro-intestinal tract are on an increasing trend. In order to diagnose a patient, various signals of the digestive organ, such as temperature, pH, and pressure, can offer the helpful information. Among the above mentioned signals, we choose the pressure variation as a monitoring signal. The variation of a pressure signal of the gastro-intestinal tract can offer the information of a digestive trouble or some clues of the diseases. In this paper, a pressure monitoring system for the digestive organs of a living pig is presented. This is why a pig's gastro-intestinal tract is very similar as human's. This system concept is to transmit the measured biomedical signals from a transmitter in a living pig to a wireless receiver that is positioned out of body. The integrated solution includes the swallow type pressure capsule and the receiving set consisting of a receiver, decoder circuit. The merit of the proposed system is that the monitoring system can supply the precise and a durable characteristic to measure and to transmit a signal in the gastro-intestinal tract. We achieved the pressure tracings in digestive organs and verified the validity of system after several in-vivo tests using the pressure monitoring system. Through various experiments, we found each organ has its own characterized pressure fluctuation.

  • PDF

Design of U-healthcare System for Real-time Blood Pressure Monitoring (실시간 혈압 모니터링 u-헬스케어 시스템의 설계)

  • Cho, Byung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.161-168
    • /
    • 2018
  • High blood pressure is main today's adult disease and existing blood pressure gauge is not possible for real-time blood pressure measurement and remote monitoring. But real-time blood pressure monitoring u-healthcare system makes effect health management. In my paper, for monitoring real-time blood pressure, an architecture of real-time blood pressure monitoring system which consisted of wrist type-blood pressure measurement, smart-phone and u-healthcare server is presented. And the analog circuit architecture which is major core function for pulse wave detection and digital hardware architecture for wrist type-blood pressure measurement is presented. Also for software development to operate this hardware system, UML analysis method and flowcharts and screen design for this software design are showed. Therefore such design method in my paper is expected to be useful for real-time blood pressure monitoring u-healthcare system implementation.

Determination of Optimal Pressure Monitoring Locations of Water Distribution Systems Using Entropy Theory and Genetic Algorithm (엔트로피 이론과 유전자 알고리즘을 결합한 상수관망의 최적 압력 계측위치 결정)

  • Chang, Dong-Eil;Ha, Keum-Ryul;Jun, Hwan-Don;Kang, Ki-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The purpose of water distribution system is supplying water to users by maintaining appropriate pressure and water quality. For efficient monitoring of the water distribution system, determination of optimal locations for pressure monitoring is essential. In this study, entropy theory was applied to determine the optimal locations for pressure monitoring. The entropy which is defined as the amount of information was calculated from the pressure change due to the variation of demand reflected the abnormal conditions at nodes, and the emitter function (fire hydrant) was used to reproduce actual pressure change pattern in EPANET. The optimal combination of monitoring points for pressure detection was determined by selecting the nodes receiving maximum information from other nodes using genetic algorithm. The Ozger's and a real network were evaluated using the proposed model. From the results, it was found that the entropy theory can provide general guideline to select the locations of pressure sensors installation for optimal design and monitoring of the water distribution systems. During decision-making phase, optimal combination of monitoring points can be selected by comparing total amount of information at each point especially when there are some constraints of installation such as limitation of available budget.

Application of the Determination Method of Monitoring Location in Real Water Distribution System (실제 상수관망에 대한 모니터링 지점선정방법의 적용)

  • Park, Yong-Gyun;Jung, Sung-Gyun;Kwon, Hyuk-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.6
    • /
    • pp.617-623
    • /
    • 2015
  • In this study, determination methods of monitoring location in water distribution system were suggested and applied to real test bed. Small block of Gwangtan water distribution system is consisted of 582 pipes, 564 junctions, 1 reservoir, and 1 pump station. Small block of Ho Chi Minh water distribution system is consisted of 162 pipes, 148 junctions, and 1 reservoir. Two small block water distribution systems were analyzed by pressure contribution analysis method to determine the optimum monitoring locations. The pressure change was estimated at each junctions by the additional demand at a junction. From the results, the optimum monitoring location can be determined by rank of pressure contribution index at each junctions due to demand change at a junction.

Developmemt of automobile sensor monitoring system (자동차 센서 모니터링 시스템 개발)

  • Choi, Nakg-Won;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.150-155
    • /
    • 2005
  • We propose a newly developed automobile sensor monitoring system incorporated with a tire pressure monitoring sensor(TPMS). The RF-transmitter based on a tire pressure sensor, sends a frame data about measured tire-pressure to RF receiver. And the various sensing signals based on sensors such as fuel-level sensor, engine oil level sensor and temperature sensors, are converted into 10-bit digital data. The microprocessor displays converting data such as tire pressure, trip distance, fuel quantity, coolant temperature and car-room temperature, on LCD panel. The proposed system can be successfully adapted to monitoring of the tire pressure and various automobile sensors.

Status Analysis for the Confinement Monitoring Technology of PWR Spent Nuclear Fuel Dry Storage System (경수로 사용후핵연료 건식저장시스템의 격납감시 기술현황 분석)

  • Baeg, Chang-Yeal;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • Leading national R&D project to design a PWR spent nuclear fuel interim dry storage system that has been under development since mid-2009, which consists of a dual purpose metal cask and concrete storage cask. To ensure the safe operation of dry storage systems in foreign countries, major confinement monitoring techniques currently consist of pressure and temperature measurement. In the case of a dual purpose metal cask, a pressure sensor is installed in the interspace of bolted double lid(primary and secondary lid) in order to measure pressure. A concrete storage cask is a canister based system made of double/redundant welded lid to ensure confinement integrity. For this reason, confinement monitoring method is real time temperature measurement by thermocouple placed in the air flow(air intake and exit) of the concrete structure(over pack and module). The use of various monitoring technologies and operating experiences for the interim dry storage system over the last decades in foreign countries were analyzed. On the basis of the analysis above, development of the confinement monitoring technology that can be used optimally in our system will be available in the near future.

Determination Methods of Pressure Monitoring Location in Water Distribution System (상수관망에서 수압모니터링지점 선정방법)

  • Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1103-1113
    • /
    • 2013
  • In this study, determination methods of the pressure monitoring location in water distribution system were introduced and applied to sample pipe network. The best determination method of the pressure monitoring location was suggested and applied to the real city pipe network. Three kinds of determination methods of pressure monitoring locations are categorized such as the sensitivity analysis according to changing roughness coefficient, pressure contribution analysis, and sensitivity analysis according to changing demand. Further-more, pressure contribution analysis and sensitivity analysis from the results of unsteady analysis were conducted and compared each other. From the results, the most accurate and simplest method was selected in this study. Therefore, the best method can be applied for the pressure management or leakage detection as a determination method of pressure monitoring location in water distribution system.

Development of Pressure Monitoring System and Pressure Changes during Kimchi Fermentation (김치발효 중 가스압력 변화와 압력측정시스템의 개발)

  • Lee, Young-Jin;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.686-689
    • /
    • 1990
  • For the monitoring of kimchi fermentation states, pressure detecting sensor and monitoring device were designed and fabricated. The system was consisted of an air tight fermenting tube(31.5 ml), strain gauge type pressure sensor and signal processing device built with operational amplifier and A/D converter, and interfaced to personal computer. Chiness cabbage kimchi was fermented in the plastic container($150{\times}220{\times}160mm$) at $25^{\circ}C\;and\;30^{\circ}C$. The fermentation was monitored with fermenting tubes containing kimchi. The pressure based kimchi fermentation curve was constructed and showed a typical kimchi curing curve having 2 stepwise pressure increasing pattern.

  • PDF