• 제목/요약/키워드: Premixed flames

검색결과 356건 처리시간 0.023초

저 스월 버너에서의 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner)

  • 강성모;이정원;김용모;정재화;안달홍
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.455-458
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially- injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flame let model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

천연가스 예혼합화염의 연소특성 및 축소반응메커니즘에 관한 연구 (Studies on Combustion Characteristics and Reduced Kinetic Mechanisms of Natural Gas Premixed Flames)

  • 이수룡;김홍집;정석호
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.166-177
    • /
    • 1998
  • Combustion characteristics of natural gas premixed flames is studied experimently and numerically by adopting a counterflow as a flamelet model in turbulent flames. Flame speeds are measured by employing LDV, and the results show that flame speed increases linearly with strain rate, which agrees well with numerical results. Parametric dependences of extinction strain rates are studied numerically with detailed kinetic mechanism to show that the addition of ethand to a methane premixed flame makes the flame more resistant to strain rate. The effect of pressure on the extinction strain rate is that the extinction strain rate increases up to 10 atm and them decreases, which is explained by competition of chain branching H+O2=OH+O and recombination reaction H+O2+M=HO2+M. Detailed mechanism having seventy-four step is systematically reduced to a nine-step and a five-step thermal NOx chemistry is reduced to two-step. Comparison between the results of the detailed and the reduced mechanisms demonstrates that the reduced mechanism successfully describes the essential features of natural gas premixed flames including extinction strain rate and NOx production.

  • PDF

탄화수소/수소/일산화탄소-공기의 예혼합화염에서 층류화염전파속도와 화염안정성 (Laminar Burning Velocities and Flame Stability Analysis of Hydrocarbon/Hydrogen/Carbon Monoxide-air Premixed Flames)

  • ;송원식;박정;이기만
    • 한국연소학회지
    • /
    • 제16권2호
    • /
    • pp.23-32
    • /
    • 2011
  • To investigate cell formation in hydrocarbon/hydrogen/carbon monoxide-air premixed flames, the outward propagation and cellular instabilities were experimentally studied in a constant pressure combustion chamber at room temperature and elevated pressures. Unstretched laminar burning velocities and Markstein lengths of the mixtures were obtained by analyzing high-speed schlieren images. In this study, hydrodynamic and diffusional- thermal instabilities were evaluated to examine their effects on flame instabilities. The experimentally-measured unstretched laminar burning velocities were compared to numerical predictions using the PREMIX code. Effective Lewis numbers of premixed flames with methane addition decreased for all of the cases; meanwhile, effective Lewis numbers with propane addition increased for lean and stoichiometric conditions and increased for rich and stoichiometric cases for hydrogen-enriched flames. With the addition of propane, the propensity for cell formation significantly was diminished, whereas cellular instabilities for hydrogen-enriched flames were promoted. However, similar behavior of cellularity was obtained with the addition of methane to the reactant mixtures.

하이브리드/이중 선회제트 연소기에서 부분예혼합-예혼합 선회화염의 상호작용 (Interaction Between Partially Premixed and Premixed Swirl Flames in a Hybrid/Dual Swirl Jet Combustor)

  • 조준익;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.7-8
    • /
    • 2012
  • The effects of interaction between partially premixed and premixed swirl flames on CO and NOx emissions were experimentally investigated using a hybrid/dual swirl jet combustor for a micro-gas turbine. Under the condition of constant angle ($45^{\circ}$) for outer swirl vane, the angle and direction of inner swirl vane installed for a partially premixed flame were varied as main parameters with a constant fuel flow rate for each nozzle. It was found that for all conditions, CO and NOx emissions were measured below 4 ppm and 15 ppm at 15% $O_2$, respectively, in a wide range of equivalence ratio (0.6~0.9). For co-swirl flows, CO emission increased dramatically as the angle of inner swirl vane increased from $15^{\circ}$ to $45^{\circ}$ near lean-flammability limit (i.e. equivalence ratio of 0.5). On the other hand, the case of swirl $angle=45^{\circ}$ provided the lowest NOx emission at higher equivalence ratios than 0.6. For counter-swirl flows, the case of swirl $angle=45^{\circ}$ extended the lean-flammability limit but higher NOx emissions were found compared to those of co-swirl flows. These results could be inferred by interaction between (inner) partially premixed and (outer) premixed swirl flames. However, these estimations were not clear yet because there was insufficient data on turbulent flow structure and fuel-air mixing in the present experimental approach.

  • PDF

라디칼 PLIF계측을 이용한 연소실의 공간적 열발생율 예측 (Prediction of Spatial Heat Release Rate of Combustion Chamber by Radicals-PLIF)

  • 최경민
    • 한국분무공학회지
    • /
    • 제8권4호
    • /
    • pp.9-16
    • /
    • 2003
  • The Purpose of this study is to investigate the relationships between the local heat release rate and CH concentration have been investigated by numerical simulations of methane-air premixed flames. And simultaneous CH and OH PLIF(Planar Laser Induced Fluorescence) measurement has been also conducted for lean premixed flame as well as for laminar flames. Numerical simulations are conducted for laminar premixed flames and turbulent ones by using PREMIX in CHEMKIN and two dimensional DNS code with GRI mechanism version 2.11, respectively. In the case of laminar premixed flame, the distance between the peak of heat release rate and that of CH concentration is under $91{\mu}m$ for all equivalence ratio calculated in present work. Even for the premixed flame in high intensity turbulence, the distribution of the heat release rate coincides with that of CH mole fraction. For CH PLIF measurements in the laminar premixed flame burner, CH fluorescence intensity as a function of equivalence ratio shows a similar trend with CH mole fraction computed by GRI mechanism. Simultaneous CH and OH PLIF measurement gave us useful information of instantaneous reaction zone. In addition, CH fluorescence can be measured even for lean conditions where CH mole fraction significantly decreases compared with that of stoichiometric condition. It was found that CH PLIF measurements can be applicable to the estimation of the spatial fluctuations of heat release rate in the engine combustion.

  • PDF

부분 예혼합-확산계의 소화특성 및 예혼합 화염의 Near-Stoichiometry 구조에 관한 연구 (On the extinction of partially premixed diffusion system and the near- stoichiometric structure of premixed flames)

  • 김종수;정석호
    • 대한기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.72-80
    • /
    • 1988
  • 본 연구에서는 부분예혼합-확산계를 모델로 하여 이론해석을 통해 화염의 구조를 밝히고, 예혼합화염을 near-stoichiometry로 설정하여 내부지역에서 2차 반응으로 해석하고, 확산화염으로 부터 예혼합화염으로의 천이를 규명하는데 그 목적이 있다.

대향류 메탄/공기 예혼합화염의 소염특성에 관한 수치해석적 연구 (A Numerical Study on the Extinction of Methane/Air Counterflow Premixed Flames)

  • 정대헌;정석호
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1982-1988
    • /
    • 1995
  • Methane/Air premixed flames are studied numerically, using a detailed chemical model, to investigate the flame strech effects on the extinction in a counterflow. The finite difference method, time integration and modified Newton iteration are used, and adaptive grid technique and grid smoothing have been employed to adjust the grid system according to the spatial steepness of the solution profiles. Results show that the flame stretch, or the conventional nondimensionalized stretch having the tangential flow characteristics of the stretched flame alone cannot adequately describes the extinction phenomena. On the other hand, the local flame stretch having both the normal and tangential flow characteristics of the stretched flame can give a proper explanation to the extinction of the symmetric planar premixed flames stabilized in a counter flow. The extinction condition were found to be a constant local stretch regardless of the equivalence ratio.

CH4/CHF3/Air 예혼합 화염의 축소 반응 메카니즘 개발 (The Development of a Short Reaction Mechanism for Premixed CH4/CHF3/Air Flames)

  • 이기용
    • 한국연소학회지
    • /
    • 제19권1호
    • /
    • pp.39-44
    • /
    • 2014
  • A short reaction mechanism for premixed $CH_4/CHF_3/Air$ flames was developed with a reduction method of the combined application of simulation error minimization (SEM) which included connectivity method and principal component analysis. It consisted of 43 species and 403 elementary reactions at the condition of less than 5% of maximum error. The calculation time operated with a short mechanism was over 5 times faster than one with a detailed reaction mechanism. Good agreement was found between the flame speeds calculated by the short reaction mechanism and those by the detailed reaction mechanism for the entire range of $CHF_3/CH_4$ mole ratios and equivalence ratios. In addition excellent agreements were determined for the profiles of temperature, species concentration, and the production rates of the various species. So the short reaction mechanism was able to accurately predict the flame structure for premixed $CH_4/CHF_3/Air$ flames.

$CH_4/O_2/N_2$ 예혼합화염에서 산소부화에 따른 화염구조 (The Flame Structure of $CH_4/O_2/N_2$ Premixed Flames on the $O_2$ Enrichment)

  • 이기용;남태형;유현석;최동수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.53-59
    • /
    • 2001
  • Experimental measurements are conducted to investigate the structure of flat $CH_4/O_2/N_2$ premixed flames. The flames are simulated using a detailed chemical kinetic mechanism. Four flames established at equivalence ratio = 0.55 are studied with the different $O_2$ enrichment level, ${\Omega}$ = 0.21, 0.25, 0.30, and 0.35. The measured flame speed and species composition profiles are compared with the calculations. Whereas there is overall good agreement between the measurements and predictions, it appears that as the $O_2$ enrichment level is increased the position of the flame is moved toward the exit of the burner and the rapid temperature rise happens near the exit of the burner, and some areas of further refinement in the kinetic mechanism are identified.

  • PDF

Numerical Modeling of Turbulent Nonpremixed Lifted Flames

  • Kim, Hoojoong;Kim, Yongmo;Ahn, Kook-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.167-172
    • /
    • 2004
  • The present study has focused on numerical investigation on the flame structure, flame lift-off and stabilization in the partially premixed turbulent lifted jet flames. Since the lifted jet flames have the partially premixed nature in the flow region between nozzle exit and flame base, level set approach is applied to simulate the partially premixed turbulent lifted jet flames for various fuel jet velocities and co-flow velocities. The flame stabilization mechanism and the flame structure near flame base are presented in detail. The predicted lift-off heights are compared with the measured ones.