• Title/Summary/Keyword: Prediction of Traffic Volume

Search Result 108, Processing Time 0.028 seconds

TRAFFIC-FLOW-PREDICTION SYSTEMS BASED ON UPSTREAM TRAFFIC (교통량예측모형의 개발과 평가)

  • 김창균
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.84-98
    • /
    • 1995
  • Network-based model were developed to predict short term future traffic volume based on current traffic, historical average, and upstream traffic. It is presumed that upstream traffic volume can be used to predict the downstream traffic in a specific time period. Three models were developed for traffic flow prediction; a combination of historical average and upstream traffic, a combination of current traffic and upstream traffic, and a combination of all three variables. The three models were evaluated using regression analysis. The third model is found to provide the best prediction for the analyzed data. In order to balance the variables appropriately according to the present traffic condition, a heuristic adaptive weighting system is devised based on the relationships between the beginning period of prediction and the previous periods. The developed models were applied to 15-minute freeway data obtained by regular induction loop detectors. The prediction models were shown to be capable of producing reliable and accurate forecasts under congested traffic condition. The prediction systems perform better in the 15-minute range than in the ranges of 30-to 45-minute. It is also found that the combined models usually produce more consistent forecasts than the historical average.

  • PDF

A Study for Assessment Scope Set-up of Road Noise in EIA (환경영향평가시 도로소음 평가범위 설정에 대한 연구)

  • Choi, Joongyu;Sun, Hyosung;Choung, Taeryang
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.4
    • /
    • pp.567-572
    • /
    • 2012
  • This paper suggests the set-up plan of the assessment scope in road noise considering road characteristics with the prediction model of road noise. The RLS90 prediction model with some assumptions is used to establish the assessment scope of road noise. The main contents of the applied assumptions are smooth drive of cars, flat region, location of all noise sources in one lane, drive in design speed, and set-up of assessment scope according to traffic volume and car speed. The information of traffic volume to predict road noise is obtained by the distribution of small cars and full-sized cars in road. In this study, the total traffic volume in road is computed by adding the number of small cars to the conversion number of small cars, which means the number of small cars making the same noise as one full-sized car. The prediction result of road noise with the influence factor of traffic volume, car speed, distance between road and receiver is presented. The resultant assessment scope of road noise is obtained by combining road noise prediction data with the set-up standard of road noise assessment scope.

Technical Improvement of Traffic Noise Environmental Impact Assessment I (도로교통소음 환경영향평가 기법 개선 연구 I)

  • Park, Young-Min;Choi, Jin-Kwon;Chang, Seo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.55-58
    • /
    • 2005
  • This study was Performed to grasp of the problem and improvement in traffic noise environmental impact assessment(EIA). National institute of environmental research(NIER) traffic noise prediction model is in general use in internal EIA. In this study, NIER noise prediction model need to improve in that the predicted results lower than the measured results. The other predict model(KLC KEI) is more accurate. Also the volume and speed of traffic is need to standardize in traffic noise prediction.

  • PDF

LSTM based Network Traffic Volume Prediction (LSTM 기반의 네트워크 트래픽 용량 예측)

  • Nguyen, Giang-Truong;Nguyen, Van-Quyet;Nguyen, Huu-Duy;Kim, Kyungbaek
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.362-364
    • /
    • 2018
  • Predicting network traffic volume has become a popular topic recently due to its support in many situations such as detecting abnormal network activities and provisioning network services. Especially, predicting the volume of the next upcoming traffic from the series of observed recent traffic volume is an interesting and challenging problem. In past, various techniques are researched by using time series forecasting methods such as moving averaging and exponential smoothing. In this paper, we propose a long short-term memory neural network (LSTM) based network traffic volume prediction method. The proposed method employs the changing rate of observed traffic volume, the corresponding time window index, and a seasonality factor indicating the changing trend as input features, and predicts the upcoming network traffic. The experiment results with real datasets proves that our proposed method works better than other time series forecasting methods in predicting upcoming network traffic.

A Geostatistical Approach for Improved Prediction of Traffic Volume in Urban Area (공간통계기법을 이용한 도시 교통량 예측의 정확성 향상)

  • Kim, Ho-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.138-147
    • /
    • 2010
  • As inaccurate traffic volume prediction may result in inadequate transportation planning and design, traffic volume prediction based on traffic volume data is very important in spatial decision making processes such as transportation planning and operation. In order to improve the accuracy of traffic volume prediction, recent studies are using the geostatistical approach called kriging and according to their reports, the method shows high predictability compared to conventional methods. Thus, this study estimated traffic volume data for St. Louis in the State of Missouri, USA using the kriging method, and tested its accuracy by comparing the estimates with actual measurements. In addition, we suggested a new method for enhancing the accuracy of prediction by the kriging method. In the new method, we estimated traffic volume data: first, by applying anisotropy, which is a characteristic of traffic volume data appearing in determining variogram factors; and second, by performing co-kriging analysis using interstate highway, which is in a high spatial correlation with traffic volume data, as a secondary variable. According to the results of the analysis, the analysis applying anisotropy showed higher accuracy than the kriging method, and co-kriging performed on the application of anisotropy produced the most accurate estimates.

Air Pollution prediction at Highway Tollgate by Using Real Time Traffic Volume (실시간 교통량을 이용한 고속도로 요금소 대기요염도 예측)

  • 박성규;김신도;이정주
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.134-140
    • /
    • 2000
  • The increase in traffic is a worldwide phenomenon. In Korea, it has been increased by 20% per annual in recent 1990’s and approximately 10 millions cars had been registered until 1997. This traffic could easily affect and contribute the local outdoor air quality(QAQ) concerned. The QAQ in highway in one of the examples and the subject in this study. The seoul tollgate located at the north-end of Keypngbu Highway was selected for the study. In case of highway tollgate, the local air pollution could be directly affected by the traffic to approach, wait and start the tollgate. Nitrogen dioxide (NO$_2$) concentration exceeded the EAQS(Environmental Air Quality Standards), but overall indoor air quality was a little better than the outdoor air quality. The measured TSP concentration was much higher than that of the EAQS. To apply a management to a air quality problem of Seoul tollgate, it was predicted air quality with traffic volume and weather condition. It was calculated NO$_2$ emission with traffic volume and predicted in and out of booth by CALINE3 at the Seoul tollgate. To make a comparison between measured and predicted concentration, the prediction was good. It was shown that NO$_2$ concentration was high in the morning at the from Seoul direction and in the evening at the to Seoul direction. it was thought that NO$_2$ concentration variation was reflected according to the traffic volume.

  • PDF

A Study on Prediction of Traffic Volume Using Road Management Big Data

  • Sung, Hongki;Chong, Kyusoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.589-594
    • /
    • 2015
  • In reflection of road expansion and increasing use rates, interest has blossomed in predicting driving environment. In addition, a gigantic scale of big data is applied to almost every area around the world. Recently, technology development is being promoted in the area of road traffic particularly for traffic information service and analysis system in utilization of big data. This study examines actual cases of road management systems and road information analysis technologies, home and abroad. Based on the result, the limitations of existing technologies and road management systems are analyzed. In this study, a development direction and expected effort of the prediction of road information are presented. This study also examines regression analysis about relationship between guide name and traffic volume. According to the development of driving environment prediction platform, it will be possible to serve more reliable road information and also it will make safe and smart road infrastructures.

A Study on Traffic Volume Prediction for e-Commerce Systems (전자상거래 시스템의 트래픽량 예측에 관한 연구)

  • Kim, Jeong-Su
    • The KIPS Transactions:PartC
    • /
    • v.18C no.1
    • /
    • pp.31-44
    • /
    • 2011
  • The applicability of network-based computing depends on the availability of the underlying network bandwidth. Such a growing gap between the capacity of the backbone network and the end users' needs results in a serious bottleneck of the access network in between. As a result, ISP incurs disadvantages in their business. If this situation is known to ISP in advance, or if ISP is able to predict traffic volume end-to-end link high-load zone, ISP and end users would be able to decrease the gap for ISP service quality. In this paper, simulation tools, such as ACE, ADM, and Flow Analysis, were used to be able to perceive traffic volume prediction and end-to-end link high-load zone. In using these simulation tools, we were able to estimate sequential transaction in real-network for e-Commerce. We also imported virtual network environment estimated network data, and create background traffic. In a virtual network environment like this, we were able to find out simulation results for traffic volume prediction and end-to-end link high-load zone according to the increase in the number of users based on virtual network environment.

A Study on the Prediction of Traffic Volume on Highway by the Reference Day of Archived Data (이력자료 참조일수에 따른 고속도로 교통량 예측에 관한 연구)

  • Lee, So-Yeon;Jung, So-Yeon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.230-237
    • /
    • 2018
  • Purpose: In Korea, traffic information is collected in real time as part of Intelligent Transportation System to enhance efficiency of road operation. However, traffic information based on real-time data is different from the traffic situation the driver will experience. Method: In this study, forecasts were made for future highway traffic by day and time period by adjusting the Archived data reference days to 3, 5 and 10 days based on existing traffic Archived data. Results: Fewer days of reference in the past showed smaller errors. The prediction of Monday based on five past histories showed greater errors than the 10 past histories, as the traffic flow on the sixth Monday of 2016 was somewhat different from the usual holiday. Conclution: This study shows that less of the reference days of the past history when estimating traffic volume, the more accurate the data of the traffic history of the event can be used on special days.

Functional regression approach to traffic analysis (함수회귀분석을 통한 교통량 예측)

  • Lee, Injoo;Lee, Young K.
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.773-794
    • /
    • 2021
  • Prediction of vehicle traffic volume is very important in planning municipal administration. It may help promote social and economic interests and also prevent traffic congestion costs. Traffic volume as a time-varying trajectory is considered as functional data. In this paper we study three functional regression models that can be used to predict an unseen trajectory of traffic volume based on already observed trajectories. We apply the methods to highway tollgate traffic volume data collected at some tollgates in Seoul, Chuncheon and Gangneung. We compare the prediction errors of the three models to find the best one for each of the three tollgate traffic volumes.