• Title/Summary/Keyword: Prediction#4

Search Result 6,614, Processing Time 0.034 seconds

Prediction of Potential Species Richness of Plants Adaptable to Climate Change in the Korean Peninsula (한반도 기후변화 적응 대상 식물 종풍부도 변화 예측 연구)

  • Shin, Man-Seok;Seo, Changwan;Lee, Myungwoo;Kim, Jin-Yong;Jeon, Ja-Young;Adhikari, Pradeep;Hong, Seung-Bum
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.562-581
    • /
    • 2018
  • This study was designed to predict the changes in species richness of plants under the climate change in South Korea. The target species were selected based on the Plants Adaptable to Climate Change in the Korean Peninsula. Altogether, 89 species including 23 native plants, 30 northern plants, and 36 southern plants. We used the Species Distribution Model to predict the potential habitat of individual species under the climate change. We applied ten single-model algorithms and the pre-evaluation weighted ensemble method. And then, species richness was derived from the results of individual species. Two representative concentration pathways (RCP 4.5 and RCP 8.5) were used to simulate the species richness of plants in 2050 and 2070. The current species richness was predicted to be high in the national parks located in the Baekdudaegan mountain range in Gangwon Province and islands of the South Sea. The future species richness was predicted to be lower in the national park and the Baekdudaegan mountain range in Gangwon Province and to be higher for southern coastal regions. The average value of the current species richness showed that the national park area was higher than the whole area of South Korea. However, predicted species richness were not the difference between the national park area and the whole area of South Korea. The difference between current and future species richness of plants could be the disappearance of a large number of native and northern plants from South Korea. The additional reason could be the expansion of potential habitat of southern plants under climate change. However, if species dispersal to a suitable habitat was not achieved, the species richness will be reduced drastically. The results were different depending on whether species were dispersed or not. This study will be useful for the conservation planning, establishment of the protected area, restoration of biological species and strategies for adaptation of climate change.

Vulnerability Assessment on Spring Drought in the Field of Agriculture (농업지대 봄 가뭄에 대한 취약성 평가)

  • Lee, Yong-Ho;Oh, Young-Ju;Na, Chae-Sun;Kim, Myung-Hyun;Kang, Kee-Kyung;Yoon, Seong-Tak
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.397-407
    • /
    • 2013
  • Seasons in Korea have very distinguishable features. Due to continental high pressure, spring in Korea is dry and has low precipitation. Due to climate change derived from the increase of greenhouse gases, climate variability had increased and it became harder to predict. This caused the spring drought harsher than usual. Since 1990s, numbers of chronic drought from winter to spring increased in southern regions of Korea. Such drought in the spring damages the growth and development of the crops sown in the spring and decreases its quantity. For stable agricultural production in the future, it is necessary to assess vulnerability of the relationship between spring drought and agricultural production as well as to establish appropriate measures accordingly. This research used CCGIS program to perform vulnerability assessment on spring drought based on climate change scenario SRES A1B, A1FI, A1T, A2, B1, B2 and RCP 8.5 in 232 regions in Korea. As a result, Every scenario showed that vulnerability of spring drought decreased from 2000s to 2050s. Ratio of decrease was 37% under SRES scenario but, 3% under RCP 8.5 scenario. Also, for 2050 prediction, every scenario predicted the highest vulnerability in Chungcheongnam-do. However, RCP-8.5 predicted higher vulnerability in Gyeonggi-do than SRES scenario. The reason for overall decrease in vulnerability of agriculture for future spring drought is because the increase of precipitation was predicted. The assessment of vulnerability by different regions showed that choosing suitable scenario is very important factor.

Development of Stand Yield Table Based on Current Growth Characteristics of Chamaecyparis obtusa Stands (현실임분 생장특성에 의한 편백 임분수확표 개발)

  • Jung, Su Young;Lee, Kwang Soo;Lee, Ho Sang;Ji Bae, Eun;Park, Jun Hyung;Ko, Chi-Ung
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.477-483
    • /
    • 2020
  • We constructed a stand yield table for Chamaecyparis obtusa based on data from an actual forest. The previous stand yield table had a number of disadvantages because it was based on actual forest information. In the present study we used data from more than 200 sampling plots in a stand of Chamaecyparis obtusa. The analysis included theestimation, recovery and prediction of the distribution of values for diameter at breast height (DBH), and the result is a valuable process for the preparation ofstand yield tables. The DBH distribution model uses a Weibull function, and the site index (base age: 30 years), the standard for assessing forest productivity, was derived using the Chapman-Richards formula. Several estimation formulas for the preparation of the stand yield table were considered for the fitness index, and the optimal formula was chosen. The analysis shows that the site index is in the range of 10 to 18 in the Chamaecyparis obtusa stand. The estimated stand volume of each sample plot was found to have an accuracy of 62%. According to the residuals analysis, the stands showed even distribution around zero, which indicates that the results are useful in the field. Comparing the table constructed in this study to the existing stand yield table, we found that our table yielded comparatively higher values for growth. This is probably because the existing analysis data used a small amount of research data that did not properly reflect. We hope that the stand yield table of Chamaecyparis obtusa, a representative species of southern regions, will be widely used for forest management. As these forests stabilize and growth progresses, we plan to construct an additional yield table applicable to the production of developed stands.

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

Change Prediction of Forestland Area in South Korea using Multinomial Logistic Regression Model (다항 로지스틱 회귀모형을 이용한 우리나라 산지면적 변화 추정에 관한 연구)

  • KWAK, Doo-Ahn
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.42-51
    • /
    • 2020
  • This study was performed to support the 6th forest basic planning by Korea Forest Service as predicting the change of forestland area by the transition of land use type in the future over 35 years in South Korea. It is very important to analyze upcoming forestland area change for future forest planning because forestland plays a basic role to predict forest resources change for afforestation, production and management in the future. Therefore, the transitional interaction between land use types in future of South Korea was predicted in this study using econometrical models based on past trend data of land use type and related variables. The econometrical model based on maximum discounted profits theory for land use type determination was used to estimate total quantitative change by forestland, agricultural land and urban area at national scale using explanatory variables such as forestry value added, agricultural income and population during over 46 years. In result, it was analyzed that forestland area would decrease continuously at approximately 29,000 ha by 2027 while urban area increases in South Korea. However, it was predicted that the forestland area would be started to increase gradually at 170,000 ha by 2050 because urban area was reduced according to population decrement from 2032 in South Korea. We could find out that the increment of forestland would be attributed to social problems such as urban hollowing and localities extinction phenomenon by steep decrement of population from 2032. The decrement and increment of forestland by unbalanced population immigration to major cities and migration to localities might cause many social and economic problems against national sustainable development, so that future strategies and policies for forestland should be established considering such future change trends of land use type for balanced development and reasonable forestland use and conservation.

Prediction Study on Major Movement Paths of Otters in the Ansim-wetland Using EN-Simulator (EN-Simulator를 활용한 안심습지 일원 수달의 주요 이동경로 예측 연구)

  • Shin, Gee-Hoon;Seo, Bo-Yong;Rho, Paikho;Kim, Ji-Young;Han, Sung-Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.13-23
    • /
    • 2021
  • In this study, we performed a Random Walker analysis to predict the Major Movement Paths of otters. The scope of the research was a simulation analysis with a radius of 7.5 km set as the final range centered on the Ansim-wetland in Daegu City, and a field survey was used to verify the model. The number of virtual otters was set to 1,000, the number of moving steps was set to 1,000 steps per grid, and simulations were performed on a total of 841 grids. As a result of the analysis, an average of 147.6 objects arrived at the boundary point under the condition of an interval of 50 m. As a result of the simulation verification, 8 points (13.1%) were found in the area where the movement probability was very high, and 9 points (14.8%) were found in the area where the movement probability was high. On the other hand, in areas with low movement paths probabilities, there were 8 points (13.1%) in low areas and 4 points (6.6%) in very low areas. Simulation verification results In areas with high otter values, the actual otter format probability was particularly high. In addition, as a result of investigating the correlation with the otter appearance point according to the unit area of the evaluation star of the movement probability, it seems that 6.8 traces were found per unit area in the area where the movement probability is the highest. In areas where the probability of movement is low, analysis was performed at 0.1 points. On the side where otters use the major movement paths of the river area, the normal level was exceeded, and as a result, in the area, 23 (63.9%), many form traces were found, along the major movement paths of the simulation. It turned out that the actual otter inhabits. The EN-Simulator analysis can predict how spatial properties affect the likelihood of major movement paths selection, and the analytical values are used to utilize additional habitats within the major movement paths. It is judged that it can be used as basic data such as to grasp the danger area of road kill in advance and prevent it.

Development of the forecasting model for import volume by item of major countries based on economic, industrial structural and cultural factors: Focusing on the cultural factors of Korea (경제적, 산업구조적, 문화적 요인을 기반으로 한 주요 국가의 한국 품목별 수입액 예측 모형 개발: 한국의, 한국에 대한 문화적 요인을 중심으로)

  • Jun, Seung-pyo;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.23-48
    • /
    • 2021
  • The Korean economy has achieved continuous economic growth for the past several decades thanks to the government's export strategy policy. This increase in exports is playing a leading role in driving Korea's economic growth by improving economic efficiency, creating jobs, and promoting technology development. Traditionally, the main factors affecting Korea's exports can be found from two perspectives: economic factors and industrial structural factors. First, economic factors are related to exchange rates and global economic fluctuations. The impact of the exchange rate on Korea's exports depends on the exchange rate level and exchange rate volatility. Global economic fluctuations affect global import demand, which is an absolute factor influencing Korea's exports. Second, industrial structural factors are unique characteristics that occur depending on industries or products, such as slow international division of labor, increased domestic substitution of certain imported goods by China, and changes in overseas production patterns of major export industries. Looking at the most recent studies related to global exchanges, several literatures show the importance of cultural aspects as well as economic and industrial structural factors. Therefore, this study attempted to develop a forecasting model by considering cultural factors along with economic and industrial structural factors in calculating the import volume of each country from Korea. In particular, this study approaches the influence of cultural factors on imports of Korean products from the perspective of PUSH-PULL framework. The PUSH dimension is a perspective that Korea develops and actively promotes its own brand and can be defined as the degree of interest in each country for Korean brands represented by K-POP, K-FOOD, and K-CULTURE. In addition, the PULL dimension is a perspective centered on the cultural and psychological characteristics of the people of each country. This can be defined as how much they are inclined to accept Korean Flow as each country's cultural code represented by the country's governance system, masculinity, risk avoidance, and short-term/long-term orientation. The unique feature of this study is that the proposed final prediction model can be selected based on Design Principles. The design principles we presented are as follows. 1) A model was developed to reflect interest in Korea and cultural characteristics through newly added data sources. 2) It was designed in a practical and convenient way so that the forecast value can be immediately recalled by inputting changes in economic factors, item code and country code. 3) In order to derive theoretically meaningful results, an algorithm was selected that can interpret the relationship between the input and the target variable. This study can suggest meaningful implications from the technical, economic and policy aspects, and is expected to make a meaningful contribution to the export support strategies of small and medium-sized enterprises by using the import forecasting model.

Extraction of Water Body Area using Micro Satellite SAR: A Case Study of the Daecheng Dam of South korea (초소형 SAR 위성을 활용한 수체면적 추출: 대청댐 유역 대상)

  • PARK, Jongsoo;KANG, Ki-Mook;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.41-54
    • /
    • 2021
  • It is very essential to estimate the water body area using remote exploration for water resource management, analysis and prediction of water disaster damage. Hydrophysical detection using satellites has been mainly performed on large satellites equipped with optical and SAR sensors. However, due to the long repeat cycle, there is a limitation that timely utilization is impossible in the event of a disaster/disaster. With the recent active development of Micro satellites, it has served as an opportunity to overcome the limitations of time resolution centered on existing large satellites. The Micro satellites currently in active operation are ICEYE in Finland and Capella satellites in the United States, and are operated in the form of clusters for earth observation purposes. Due to clustering operation, it has a short revisit cycle and high resolution and has the advantage of being able to observe regardless of weather or day and night with the SAR sensor mounted. In this study, the operation status and characteristics of micro satellites were described, and the water area estimation technology optimized for micro SAR satellite images was applied to the Daecheong Dam basin on the Korean Peninsula. In addition, accuracy verification was performed based on the reference value of the water generated from the optical satellite Sentinel-2 satellite as a reference. In the case of the Capella satellite, the smallest difference in area was shown, and it was confirmed that all three images showed high correlation. Through the results of this study, it was confirmed that despite the low NESZ of Micro satellites, it is possible to estimate the water area, and it is believed that the limitations of water resource/water disaster monitoring using existing large SAR satellites can be overcome.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.

Analysis of Service Factors on the Management Performance of Korea Railroad Corporation - Based on the railroad statistical yearbook data - (한국철도공사 경영성과에 미치는 서비스 요인분석 -철도통계연보 데이터를 대상으로-)

  • Koo, Kyoung-Mo;Seo, Jeong-Tek;Kang, Nak-Jung
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.4
    • /
    • pp.127-144
    • /
    • 2021
  • The purpose of this study is to derive service factors based on the "Rail Statistical Yearbook" data of railroad service providers from 1990 to 2019, and to analyze the effect of the service factors on the operating profit ratio(OPR), a representative management performance variable of railroad transport service providers. In particular, it has academic significance in terms of empirical research to evaluate whether the management innovation of the KoRail has changed in line with the purpose of establishing the corporation by dividing the research period into the first period (1990-2003) and the latter (2004-2019). The contents of this study investigated previous studies on the quality of railway passenger transportation service and analyzed the contents of government presentation data related to the management performance evaluation of the KoRail. As an empirical analysis model, a research model was constructed using OPR as a dependent variable and service factor variables of infrastructure, economy, safety, connectivity, and business diversity as explanatory variables based on the operation and management activity information during the analysis period 30 years. On the results of research analysis, OPR is that the infrastructure factor is improved by structural reform or efficiency improvement. And economic factors are the fact that operating profit ratio improves by reducing costs. The safety factor did not reveal the significant explanatory power of the regression coefficient, but the sign of influence was the same as the prediction. Connectivity factor reveals a influence on differences between first period and latter, but OPR impact direction is changed from negative in before to positive in late. This is an evironment in which connectivity is actually realized in later period. On diversity factor, there is no effect of investment share in subsidiaries and government subsidies on OPR.