• Title/Summary/Keyword: Precision Approach

Search Result 1,308, Processing Time 0.029 seconds

Optimization and Applicability Verification of Simultaneous Chlorogenic acid and Caffeine Analysis in Health Functional Foods using HPLC-UVD (HPLC-UVD를 이용한 건강기능식품에서 클로로겐산과 카페인 동시분석법 최적화 및 적용성 검증)

  • Hee-Sun Jeong;Se-Yun Lee;Kyu-Heon Kim;Mi-Young Lee;Jung-Ho Choi;Jeong-Sun Ahn;Jae-Myoung Oh;Kwang-Il Kwon;Hye-Young Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.61-71
    • /
    • 2024
  • In this study, we analyzed chlorogenic acid indicator components in preparation for the additional listing of green coffee bean extract in the Health Functional Food Code and optimized caffeine for simultaneous analysis. We extracted chlorogenic acid and caffeine using 30% methanol, phosphoric acid solution, and acetonitrile-containing phosphoric acid and analyzed them at 330 and 280 nm, respectively, using liquid chromatography. Our analysis validation results yielded a correlation coefficient (R2) revealing a significance level of at least 0.999 within the linear quantitative range. The chlorogenic acid and caffeine detection and quantification limits were 0.5 and 0.2 ㎍/mL and 1.4, and 0.4 ㎍/mL, respectively. We confirmed that the precision and accuracy results were suitable using the AOAC validation guidelines. Finally, we developed a simultaneous chlorogenic acid and caffeine analysis approach. In addition, we confirmed that our analysis approach could simultaneously quantify chlorogenic acid and caffeine by examining the applicability of each formulation through prototypes and distribution products. In conclusion, the results of this study demonstrated that the standardized analysis would expectably increase chlorogenic acidcontaining health functional food quality control reliability.

Model Evaluation for Predicting the Full Bloom Date of Apples Based on Air Temperature Variations in South Korea's Major Production Regions (기온 변화에 따른 우리나라 사과 주산지 만개일 예측을 위한 모델 평가)

  • Jae Hoon Jeong;Jeom Hwa Han;Jung Gun Cho;Dong Yong Lee;Seul Ki Lee;Si Hyeong Jang;Suhyun Ryu
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.501-512
    • /
    • 2023
  • This study aimed to assess and determine the optimal model for predicting the full bloom date of 'Fuji' apples across South Korea. We evaluated the performance of four distinct models: the Development Rate Model (DVR)1, DVR2, the Chill Days (CD) model, and a sequentially integrated approach that combined the Dynamic model (DM) and the Growing Degree Hours (GDH) model. The full bloom dates and air temperatures were collected over a three-year period from six orchards located in the major apple production regions of South Korea: Pocheon, Hwaseong, Geochang, Cheongsong, Gunwi, and Chungju. Among these models, the one that combined DM for calculating chilling accumulation and the GDH model for estimating heat accumulation in sequence demonstrated the most accurate predictive performance, in contrast to the CD model that exhibited the lowest predictive precision. Furthermore, the DVR1 model exhibited an underestimation error at orchard located in Hwaseong. It projected a faster progression of the full bloom dates than the actual observations. This area is characterized by minimal diurnal temperature ranges, where the daily minimum temperature is high and the daily maximum temperature is relatively low. Therefore, to achieve a comprehensive prediction of the blooming date of 'Fuji' apples across South Korea, it is recommended to integrate a DM model for calculating the necessary chilling accumulation to break dormancy with a GDH model for estimating the requisite heat accumulation for flowering after dormancy release. This results in a combined DM+GDH model recognized as the most effective approach. However, further data collection and evaluation from different regions are needed to further refine its accuracy and applicability.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.

Accuracy of 5-axis precision milling for guided surgical template (가이드 수술용 템플릿을 위한 5축 정밀가공공정의 정확성에 관한 연구)

  • Park, Ji-Man;Yi, Tae-Kyoung;Jung, Je-Kyo;Kim, Yong;Park, Eun-Jin;Han, Chong-Hyun;Koak, Jai-Young;Kim, Seong-Kyun;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • Purpose: The template-guided implant surgery offers several advantages over the traditional approach. The purpose of this study was to evaluate the accuracy of coordinate synchronization procedure with 5-axis milling machine for surgical template fabrication by means of reverse engineering through universal CAD software. Materials and methods: The study was performed on ten edentulous models with imbedded gutta percha stoppings which were hidden under silicon gingival form. The platform for synchordination was formed on the bottom side of models and these casts were imaged in Cone beam CT. Vectors of stoppings were extracted and transferred to those of planned implant on virtual planning software. Depth of milling process was set to the level of one half of stoppings and the coordinate of the data was synchronized to the model image. Synchronization of milling coordinate was done by the conversion process for the platform for the synchordination located on the bottom of the model. The models were fixed on the synchordination plate of 5-axis milling machine and drilling was done as the planned vector and depth based on the synchronized data with twist drill of the same diameter as GP stopping. For the 3D rendering and image merging, the impression tray was set on the conbeam CT and pre- and post- CT acquiring was done with the model fixed on the impression body. The accuracy analysis was done with Solidworks (Dassault systems, Concord, USA) by measuring vector of stopping’s top and bottom centers of experimental model through merging and reverse engineering the planned and post-drilling CT image. Correlations among the parameters were tested by means of Pearson correlation coefficient and calculated with SPSS (release 14.0, SPSS Inc. Chicago, USA) ($\alpha$ = 0.05). Results: Due to the declination, GP remnant on upper half of stoppings was observed for every drilled bores. The deviation between planned image and drilled bore that was reverse engineered was 0.31 (0.15 - 0.42) mm at the entrance, 0.36 (0.24 - 0.51) mm at the apex, and angular deviation was 1.62 (0.54 - 2.27)$^{\circ}$. There was positive correlation between the deviation at the entrance and that at the apex (Pearson Correlation Coefficient = 0.904, P = .013). Conclusion: The coordinate synchronization 5-axis milling procedure has adequate accuracy for the production of the guided surgical template.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Application of Deep Learning for Classification of Ancient Korean Roof-end Tile Images (딥러닝을 활용한 고대 수막새 이미지 분류 검토)

  • KIM Younghyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.24-35
    • /
    • 2024
  • Recently, research using deep learning technologies such as artificial intelligence, convolutional neural networks, etc. has been actively conducted in various fields including healthcare, manufacturing, autonomous driving, and security, and is having a significant influence on society. In line with this trend, the present study attempted to apply deep learning to the classification of archaeological artifacts, specifically ancient Korean roof-end tiles. Using 100 images of roof-end tiles from each of the Goguryeo, Baekje, and Silla dynasties, for a total of 300 base images, a dataset was formed and expanded to 1,200 images using data augmentation techniques. After building a model using transfer learning from the pre-trained EfficientNetB0 model and conducting five-fold cross-validation, an average training accuracy of 98.06% and validation accuracy of 97.08% were achieved. Furthermore, when model performance was evaluated with a test dataset of 240 images, it could classify the roof-end tile images from the three dynasties with a minimum accuracy of 91%. In particular, with a learning rate of 0.0001, the model exhibited the highest performance, with accuracy of 92.92%, precision of 92.96%, recall of 92.92%, and F1 score of 92.93%. This optimal result was obtained by preventing overfitting and underfitting issues using various learning rate settings and finding the optimal hyperparameters. The study's findings confirm the potential for applying deep learning technologies to the classification of Korean archaeological materials, which is significant. Additionally, it was confirmed that the existing ImageNet dataset and parameters could be positively applied to the analysis of archaeological data. This approach could lead to the creation of various models for future archaeological database accumulation, the use of artifacts in museums, and classification and organization of artifacts.

A Study on Hydrogeological Characteristics of Deep-Depth Rock Aquifer by Rock Types in Korea (국내 암종별 고심도 암반대수층 수리지질특성 연구)

  • Hangbok Lee;Chan Park;Dae-Sung Cheon;Junhyung Choi;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.374-392
    • /
    • 2024
  • In order to successfully select a site for deep geological disposal of high-level radioactive waste, it is important to perform the stepwise approach along with the systematic selection and survey of evaluation parameters of geological environmental characteristics suitable for the domestic geological environment. In this study, we evaluated the characteristics of hydraulic conductivity, which is considered the most important evaluation parameter in the field of hydrogeology, targeting a deep-depth rock aquifer where actual disposal facilities are expected to be located. In particular, for the first time in Korea, we obtained in-situ pressure-flow data by directly conducting hydraulic tests in boreholes at depths ranging from 500 m to 750 m in various rock types distributed in Korea (granite/volcanic rock/gneiss/mudstone). And we derived hydraulic conductivity values by rock types and depth using verified analytical methods. For this purpose, precision hydraulic testing equipment developed in-house through this study was used, and detailed investigation procedures based on standard test methods were applied to field tests. As a result of the analysis, the average hydraulic conductivity value was found to be in the range of 10-9 m/s in all granite/volcanic rock/gneiss areas. In the mudstone area, an average hydraulic conductivity value of 10-11 m/s was derived, which was about 100 times (2 orders of magnitude) lower than that of the fractured rock aquifers. Moreover, permeability tended to slightly decrease with depth in fractured rock aquifers (granite and volcanic rock areas) containing many rock fractures. The gneiss area tended to have large local differences in permeability according to the composition of the stratum and the development of fracture zones rather than depth. In mudstone areas with weak fracture development, there was no significant variation in rock permeability according to depth. The hydraulic conductivity results by various rock types and depth presented in this study are expected to be utilized in building a foundational database for the site selection, design, and construction of disposal facilities in Korea.

A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis (텍스트 마이닝을 활용한 신문사에 따른 내용 및 논조 차이점 분석)

  • Kam, Miah;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.53-77
    • /
    • 2012
  • This study analyses the difference of contents and tones of arguments among three Korean major newspapers, the Kyunghyang Shinmoon, the HanKyoreh, and the Dong-A Ilbo. It is commonly accepted that newspapers in Korea explicitly deliver their own tone of arguments when they talk about some sensitive issues and topics. It could be controversial if readers of newspapers read the news without being aware of the type of tones of arguments because the contents and the tones of arguments can affect readers easily. Thus it is very desirable to have a new tool that can inform the readers of what tone of argument a newspaper has. This study presents the results of clustering and classification techniques as part of text mining analysis. We focus on six main subjects such as Culture, Politics, International, Editorial-opinion, Eco-business and National issues in newspapers, and attempt to identify differences and similarities among the newspapers. The basic unit of text mining analysis is a paragraph of news articles. This study uses a keyword-network analysis tool and visualizes relationships among keywords to make it easier to see the differences. Newspaper articles were gathered from KINDS, the Korean integrated news database system. KINDS preserves news articles of the Kyunghyang Shinmun, the HanKyoreh and the Dong-A Ilbo and these are open to the public. This study used these three Korean major newspapers from KINDS. About 3,030 articles from 2008 to 2012 were used. International, national issues and politics sections were gathered with some specific issues. The International section was collected with the keyword of 'Nuclear weapon of North Korea.' The National issues section was collected with the keyword of '4-major-river.' The Politics section was collected with the keyword of 'Tonghap-Jinbo Dang.' All of the articles from April 2012 to May 2012 of Eco-business, Culture and Editorial-opinion sections were also collected. All of the collected data were handled and edited into paragraphs. We got rid of stop-words using the Lucene Korean Module. We calculated keyword co-occurrence counts from the paired co-occurrence list of keywords in a paragraph. We made a co-occurrence matrix from the list. Once the co-occurrence matrix was built, we used the Cosine coefficient matrix as input for PFNet(Pathfinder Network). In order to analyze these three newspapers and find out the significant keywords in each paper, we analyzed the list of 10 highest frequency keywords and keyword-networks of 20 highest ranking frequency keywords to closely examine the relationships and show the detailed network map among keywords. We used NodeXL software to visualize the PFNet. After drawing all the networks, we compared the results with the classification results. Classification was firstly handled to identify how the tone of argument of a newspaper is different from others. Then, to analyze tones of arguments, all the paragraphs were divided into two types of tones, Positive tone and Negative tone. To identify and classify all of the tones of paragraphs and articles we had collected, supervised learning technique was used. The Na$\ddot{i}$ve Bayesian classifier algorithm provided in the MALLET package was used to classify all the paragraphs in articles. After classification, Precision, Recall and F-value were used to evaluate the results of classification. Based on the results of this study, three subjects such as Culture, Eco-business and Politics showed some differences in contents and tones of arguments among these three newspapers. In addition, for the National issues, tones of arguments on 4-major-rivers project were different from each other. It seems three newspapers have their own specific tone of argument in those sections. And keyword-networks showed different shapes with each other in the same period in the same section. It means that frequently appeared keywords in articles are different and their contents are comprised with different keywords. And the Positive-Negative classification showed the possibility of classifying newspapers' tones of arguments compared to others. These results indicate that the approach in this study is promising to be extended as a new tool to identify the different tones of arguments of newspapers.