DOI QR코드

DOI QR Code

Accuracy of 5-axis precision milling for guided surgical template

가이드 수술용 템플릿을 위한 5축 정밀가공공정의 정확성에 관한 연구

  • Park, Ji-Man (Department of Prosthodontics, School of Medicine, Ewha Womans University) ;
  • Yi, Tae-Kyoung (Seoul Jo-Eun Dental Clinic) ;
  • Jung, Je-Kyo (Seoul Jo-Eun Dental Clinic) ;
  • Kim, Yong (Department of Implant Dentistry, Graduate School of Clinical Dentistry, Hallym University) ;
  • Park, Eun-Jin (Department of Prosthodontics, School of Medicine, Ewha Womans University) ;
  • Han, Chong-Hyun (Department of Prosthodontics, College of Dentistry, Yonsei University) ;
  • Koak, Jai-Young (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Kim, Seong-Kyun (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Heo, Seong-Joo (Department of Prosthodontics, School of Dentistry, Seoul National University)
  • 박지만 (이화여자대학교 의과대학 치과보철과) ;
  • 이태경 (서울좋은치과) ;
  • 정제교 (서울좋은치과) ;
  • 김용 (한림대학교 임상치의학대학원 임플란트학과) ;
  • 박은진 (이화여자대학교 의과대학 치과보철과) ;
  • 한종현 (연세대학교 치과대학 보철학교실) ;
  • 곽재영 (서울대학교 치과대학 보철학교실) ;
  • 김성균 (서울대학교 치과대학 보철학교실) ;
  • 허성주 (서울대학교 치과대학 보철학교실)
  • Received : 2010.10.03
  • Accepted : 2010.10.16
  • Published : 2010.10.29

Abstract

Purpose: The template-guided implant surgery offers several advantages over the traditional approach. The purpose of this study was to evaluate the accuracy of coordinate synchronization procedure with 5-axis milling machine for surgical template fabrication by means of reverse engineering through universal CAD software. Materials and methods: The study was performed on ten edentulous models with imbedded gutta percha stoppings which were hidden under silicon gingival form. The platform for synchordination was formed on the bottom side of models and these casts were imaged in Cone beam CT. Vectors of stoppings were extracted and transferred to those of planned implant on virtual planning software. Depth of milling process was set to the level of one half of stoppings and the coordinate of the data was synchronized to the model image. Synchronization of milling coordinate was done by the conversion process for the platform for the synchordination located on the bottom of the model. The models were fixed on the synchordination plate of 5-axis milling machine and drilling was done as the planned vector and depth based on the synchronized data with twist drill of the same diameter as GP stopping. For the 3D rendering and image merging, the impression tray was set on the conbeam CT and pre- and post- CT acquiring was done with the model fixed on the impression body. The accuracy analysis was done with Solidworks (Dassault systems, Concord, USA) by measuring vector of stopping’s top and bottom centers of experimental model through merging and reverse engineering the planned and post-drilling CT image. Correlations among the parameters were tested by means of Pearson correlation coefficient and calculated with SPSS (release 14.0, SPSS Inc. Chicago, USA) ($\alpha$ = 0.05). Results: Due to the declination, GP remnant on upper half of stoppings was observed for every drilled bores. The deviation between planned image and drilled bore that was reverse engineered was 0.31 (0.15 - 0.42) mm at the entrance, 0.36 (0.24 - 0.51) mm at the apex, and angular deviation was 1.62 (0.54 - 2.27)$^{\circ}$. There was positive correlation between the deviation at the entrance and that at the apex (Pearson Correlation Coefficient = 0.904, P = .013). Conclusion: The coordinate synchronization 5-axis milling procedure has adequate accuracy for the production of the guided surgical template.

연구 목적: 컴퓨터-가이드 임플란트 수술은 전통적인 방법에 비해 여러 가지 장점을 가진다. 본 연구의 목적은 가이드 수술용 템플릿 제작을 위한 좌표동기화 5축 정밀가 공공정의 정확도를 범용 CAD 소프트웨어를 통해 역설계공학의 방법으로 평가하는 것이다. 연구 재료 및 방법: 악궁 형태의 모형에 거타퍼쳐 스타핑을 매식한 10 개의 모형을 만들고 상부에 실리콘 인상재를 이용하여 인공치은을 덮어 스타핑의 위치를 보이지 않게 가렸다. 모형의 하면에 동기화를 위한 좌표동기화 형상을 만든 뒤 Cone beam CT에서 3차원 영상을 얻었다. 임플란트 계획 소프트웨어의 CT 이미지 상에서 매식된 스타핑과 동일한 방향으로 스타핑의 1/2 깊이까지 가상의 시술계획을 하고, 스타핑의 방향벡터와 저지점 (1/2지점) 데이터를 석고모형의 영상으로 좌표동기화 하였다. 이후 모형하면의 좌표동기화 형상을 이용하여 가공기기상의 좌표로 좌표변환을 통해 가공좌표동기화를 하였다. 5축 밀링머신의 좌표동기화판에 모형을 고정한 후, 동기화된 가공데이터에 의거하여 스타핑과 동일한 직경의 드릴로 계획된 벡터와 깊이로 정확히 가공 하였다. 모델에 정확히 안착되는 인상트레이를 CT 장비에 미리 고정한 상태에서, 인상트레이에 모델을 적합하여 이미지를 획득한 뒤 3차원 재구성하는 방법으로 영상을 중첩하여 비교 분석하였다. SolidWorks (Dassault Systems, Concord, USA) 범용 CAD 상에 영상을 불러들여 역설계공학의 방법으로 실린더 상부, 하부의 중점에서의 위치편차와 각도편차를 조사하였다. 통계는 SPSS (release 14.0, SPSS Inc., Chicago, USA)를 이용하여 각 편차 사이의 상관관계를 분석하였다 ($\alpha$ = 0.05). 결과: 위치 편차로 인하여 모든 드릴 보어 (bore)에서 상부 1/2에 잔존하는 거타퍼쳐의 일부를 관찰할 수 있었다. 실험 모형상에서 계획된 이미지와 드릴링 후CT에서 역설계를 거친 이미지 사이의 위치편차는 상부에서 0.31 (0.15 - 0.42) mm, 하부에서 0.36 (0.24 - 0.51) mm, 각도편차는 1.62 (0.54 - 2.27)$^{\circ}$이었다. 실린더 상부와 하부 위치 편차는 양의 상관관계를 가졌다 (Pearson Correlation Coeffocient = 0.904, P= .013). 결론: 좌표동기화 5축 정밀가공 공정은 가이드 수술용 템플릿을 제작하는 데에 적합한 정확도를 가진다.

Keywords

References

  1. Hounsfield GN. Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. Br J Radiol 1995;68:H166-72.
  2. Jacobs R, Adriansens A, Verstreken K, Suetens P, van Steenberghe D. Predictability of a three-dimensional planning system for oral implant surgery. Dentomaxillofac Radiol 1999;28:105-11. https://doi.org/10.1038/sj.dmfr.4600419
  3. Fortin T, Champleboux G, Bianchi S, Buatois H, Coudert JL. Precision of transfer of preoperative planning for oral implants based on conebeam CT-scan images through a robotic drilling machine. Clin Oral Implants Res 2002;13:651-6. https://doi.org/10.1034/j.1600-0501.2002.130612.x
  4. Fortin T, Champleboux G, Lorme′e J, Coudert JL. Precise dental implant placement in bone using surgical guides in conjunction with medical imaging techniques. J Oral Implantol 2000;26:300-3. https://doi.org/10.1563/1548-1336(2000)026<0300:PDIPIB>2.3.CO;2
  5. Schmitt SM, Chance DA. Fabrication of titanium implant-retained restorations with nontraditional machining techniques. Int J Prosthodont 1995;8:332-6.
  6. Lee WJ, Hong YS, Lee YH. An Implementation Scheme for Rapid Prototyping Systems. Trans of the KSME 1993;33:297-310.
  7. Lee SH, Chang IT, Yim SH. Dimensional accuracy of denture base using laser scanner of reverse engineering technic. J Korean Acad Prosthodont 1999;37:167-84.
  8. Valente F, Schiroli G, Sbrenna A. Accuracy of computer-aided oral implant surgery: a clinical and radiographic study. Int J Oral Maxillofac Implants 2009;24:234-42.
  9. Van Assche N, van Steenberghe D, Guerrero ME, Hirsch E, Schutyser F, Quirynen M, Jacobs R. Accuracy of implant placement based on pre-surgical planning of three-dimensional conebeam images: a pilot study. J Clin Periodontol 2007;34:816-21. https://doi.org/10.1111/j.1600-051X.2007.01110.x
  10. Hoffmann J, Westendorff C, Gomez-Roman G, Reinert S. Accuracy of navigation-guided socket drilling before implant installation compared to the conventional free-hand method in a synthetic edentulous lower jaw model. Clin Oral Implants Res 2005;16:609-14. https://doi.org/10.1111/j.1600-0501.2005.01153.x
  11. Eggers G, Patellis E, Mu¨hling J. Accuracy of template-based dental implant placement. Int J Oral Maxillofac Implants 2009;24:447-54.
  12. Widmann G, Bale RJ. Accuracy in computer-aided implant surgery-a review. Int J Oral Maxillofac Implants 2006;21:305-13.
  13. Fortin T, Bosson JL, Isidori M, Blanchet E. Effect of flapless surgery on pain experienced in implant placement using an image-guided system. Int J Oral Maxillofac Implants 2006;21:298-304.
  14. Fortin T, Bosson JL, Coudert JL, Isidori M. Reliability of preoperative planning of an image-guided system for oral implant placement based on 3-dimensional images: an in vivo study. Int J Oral Maxillofac Implants 2003;18:886-93.
  15. Naitoh M, Ariji E, Okumura S, Ohsaki C, Kurita K, Ishigami T. Can implants be correctly angulated based on surgical templates used for osseointegrated dental implants? Clin Oral Implants Res 2000;11:409-14. https://doi.org/10.1034/j.1600-0501.2000.011005409.x
  16. Schermeier O, Lueth T, Cho C, Hildebrand D, Klein M, Nelson K. The precision of the RoboDent system- An in vitro study. In: Lemke HU, Vannier MW, Inamura K, Farman AG. Computer-assisted Radiology and Surgery, New York: Springer; 2002, p.947-52.
  17. Worthington P. Injury to the inferior alveolar nerve during implant placement: a formula for protection of the patient and clinician. Int J Oral Maxillofac Implants 2004;19:731-4.
  18. Ruppin J, Popovic A, Strauss M, Spu¨ntrup E, Steiner A, Stoll C. Evaluation of the accuracy of three different computer-aided surgery systems in dental implantology: optical tracking vs. stereolithographic splint systems. Clin Oral Implants Res 2008;19:709-16.
  19. Sarment DP, Sukovic P, Clinthorne N. Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 2003;18:571-7.

Cited by

  1. Evaluation of the accuracy of two different surgical guides in dental implantology: stereolithography fabricated vs. positioning device fabricated surgical guides vol.50, pp.4, 2012, https://doi.org/10.4047/jkap.2012.50.4.271
  2. A survey of the satisfaction of patients who have undergone implant surgery with and without employing a computer-guided implant surgical template vol.6, pp.5, 2014, https://doi.org/10.4047/jap.2014.6.5.395
  3. A case report of a surgical guide fabricated via intraoral scanning-based implant planning and wax-based rapid prototyping vol.53, pp.3, 2015, https://doi.org/10.4047/jkap.2015.53.3.244