DOI QR코드

DOI QR Code

Model Evaluation for Predicting the Full Bloom Date of Apples Based on Air Temperature Variations in South Korea's Major Production Regions

기온 변화에 따른 우리나라 사과 주산지 만개일 예측을 위한 모델 평가

  • Jae Hoon Jeong (Fruit Research Division, National institute of Horticultural & Herbal Science) ;
  • Jeom Hwa Han (Fruit Research Division, National institute of Horticultural & Herbal Science) ;
  • Jung Gun Cho (Fruit Research Division, National institute of Horticultural & Herbal Science) ;
  • Dong Yong Lee (Fruit Research Division, National institute of Horticultural & Herbal Science) ;
  • Seul Ki Lee (Fruit Research Division, National institute of Horticultural & Herbal Science) ;
  • Si Hyeong Jang (Fruit Research Division, National institute of Horticultural & Herbal Science) ;
  • Suhyun Ryu (Department of Digital Agriculture, Rural Development Administration)
  • 정재훈 (국립원예특작과학원 원예작물부 과수과 ) ;
  • 한점화 (국립원예특작과학원 원예작물부 과수과) ;
  • 조정건 (국립원예특작과학원 원예작물부 과수과 ) ;
  • 이동용 (국립원예특작과학원 원예작물부 과수과 ) ;
  • 이슬기 (국립원예특작과학원 원예작물부 과수과 ) ;
  • 장시형 (국립원예특작과학원 원예작물부 과수과 ) ;
  • 류수현 (농촌진흥청 디지털농업추진단 )
  • Received : 2023.07.04
  • Accepted : 2023.10.30
  • Published : 2023.10.31

Abstract

This study aimed to assess and determine the optimal model for predicting the full bloom date of 'Fuji' apples across South Korea. We evaluated the performance of four distinct models: the Development Rate Model (DVR)1, DVR2, the Chill Days (CD) model, and a sequentially integrated approach that combined the Dynamic model (DM) and the Growing Degree Hours (GDH) model. The full bloom dates and air temperatures were collected over a three-year period from six orchards located in the major apple production regions of South Korea: Pocheon, Hwaseong, Geochang, Cheongsong, Gunwi, and Chungju. Among these models, the one that combined DM for calculating chilling accumulation and the GDH model for estimating heat accumulation in sequence demonstrated the most accurate predictive performance, in contrast to the CD model that exhibited the lowest predictive precision. Furthermore, the DVR1 model exhibited an underestimation error at orchard located in Hwaseong. It projected a faster progression of the full bloom dates than the actual observations. This area is characterized by minimal diurnal temperature ranges, where the daily minimum temperature is high and the daily maximum temperature is relatively low. Therefore, to achieve a comprehensive prediction of the blooming date of 'Fuji' apples across South Korea, it is recommended to integrate a DM model for calculating the necessary chilling accumulation to break dormancy with a GDH model for estimating the requisite heat accumulation for flowering after dormancy release. This results in a combined DM+GDH model recognized as the most effective approach. However, further data collection and evaluation from different regions are needed to further refine its accuracy and applicability.

사과 '후지' 만개일의 예측을 위해 전국적으로 활용이 가능한 모델을 선발하기 위해 우리나라에서 사용된 사례가 있는 대표적인 모델 4종을 평가하였다. 이를 위해 우리나라 사과 주산지 6곳(포천, 화성, 거창, 청송, 군위, 충주)의 사과원에서 3년간 관측된 기온과 만개일을 수집하여 각 모델에 적용하고 모델의 예측력을 평가 하였다. 냉각량 추정을 위한 Dynamic(DM) 모델과 가온량 추정을 위한 Growing Degree Days(GDH) 모델을 순차적으로 결합한 모델이 예측력이 가장 좋았으며, Chill Days(CD) 모델의 예측력이 가장 낮았다. Development Rate Model 1(DVR1)은 화성 지역과 같이 일 최저기온이 높고 상대적으로 일 최고기온이 낮아 일교차가 작은 지역에서는 실측일보다 빠르게 예측되는 과소추정오차를 보였다. 따라서 단일 모델로 우리나라 전국적인 사과 '후지' 만개일 예측을 위해서는 휴면타파에 필요한 냉각량 산정을 위한 DM 모델과 휴면타파 이후 개화에 필요한 고온량 산정을 위한 GDH 모델이 결합된 DM+GDH 모델이 가장 효과적일 것으로 판단된다. 그러나 보다 광범위한 지역의 장기간의 자료 수집과 이를 이용한 평가가 필요하다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(과제번호: PJ01699503, RS-2022-RD010279, 과제명: 사과 디지털 과원 안정생산 모델 개발 및 실증)의 지원에 의해 이루어진 것임.

References

  1. Ahn M.I., and S.C. Yun 2021, Application of the Maryblyt model for the infection of fire blight on apple trees at Chungju, Jecheon, and Eumsung during 2015-2020. Plant Pathol J 37:543-554. doi:10.5423/PPJ.OA.07.2021.0120
  2. Anderson J.L., E.A. Richardson, and C.D. Kesner 1986, Validation of chill unit and flower bud phenology models for 'Montmorency' sour cherry. Acta Hortic 184:71-78. doi:10.17660/ActaHortic.1986.184.7
  3. Atkinson C.J., R.M. Brennan, and H.G. Jones 2013, Declining chilling and its impact on temperate perennial crops. Environ Exp Bot 91:48-62. doi:10.1016/j.envexpbot.2013.02.004
  4. Cesaraccio C., D. Spano, R.L. Snyder, and P. Duce 2004, Chilling and forcing model to predict bud-burst of crop and forest species. Agric For Meteorol 126:1-13. doi:10.1016/j.agrformet.2004.03.002
  5. Cesaraccio C., D. Spano, R.L. Snyder, and P. Duce 2005, Corrigendum to "chilling and forcing model to predict bud-burst of crop and forest species". Agric For Meteorol 129:211. doi:10.1016/j.agrformet.2004.03.010
  6. Chandler W.H., and D.S. Brown 1957, Deciduous orchards in California winters. Calif Agric Ext Serv Cir 179, College of Agriculture, University of California, CA, USA.
  7. Choi C.M., and S.G. Moon 2009, Changes of flowering time in the weather flora in Busan using the time series analysis. J Environ Sci 18:369-374. (in Korean)
  8. Couvillon G.A. 1995, Temperature and stress effects on rest in quit trees: A reviews. Acta Hortic 395:11-19.
  9. Darbyshire R., L. Webb, I. Goodwin, and S. Barlow 2011, Winter chilling trends for deciduous fruit trees in Australia. Agric For Meteorol 151:1074-1085. doi:10.1016/j-agrformet.2011.03.010
  10. Erze A., and S. Fishman 1997, Dynamic model chilling portionns. Excel worksheet, available at http://ucanr.edu/sites/fruittree/files/49319.xls
  11. Fadon E., S. Herrera, B.I. Guerrero, M.E. Guerra, and J. Rodrigo 2020, Chilling and heat requirements of temperate stone fruit trees (Prunus sp.). Agronomy 10:409. doi:10.3390/agronomy10030409
  12. Fishman S., A. Erez, and G.A. Couvillon 1987, The temperature dependence of dormancy breaking in plants: Mathematical analysis of a two-step model involving a cooperative transition. J Theor Biol 124:473-483. doi:10.1016/S0022-5193(87)80221-7
  13. Han J.H., S.H. Lee, J.J. Choi, S.B. Jung, and H.I. Jang 2008, Estimation of dormancy breaking time by development rate model in 'Niitaka' pear (Pyrus pirifolia Nakai). Korean J Agric For Meteorol 10:58-64. (in Korean) doi:10.5532/KJAFM.2008.10.2.058
  14. Kim D.J., and J.H. Kim 2018, An outlook of changes in the flowering dates and low temperature after flowering under the RCP8.5 projected climate condition. Korean J Agric For Meteorol 20:313-320. (in Korean) doi:10.5532/KJAFM.2018.20.4.313
  15. Kim J.H., D.J. Kim, S.O. Kim, E.J. Yun, O. Ju, J.S. Park, and Y.S. Shin 2019, Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring. Korean J Agric For Meteorol 21:55-64. (in Korean) doi:10.5532/KJAFM.2019.21.1.55
  16. Kim J.H., E.J. Yun, D.J. Kim, D.G. Kang, B.H. Seo, and K.M. Shim 2020, Evaluation of regional flowering phenological models in Niitaka pear by temperature patterns. Korean J Agric For Meteorol 22:268-278. (in Korean) doi:10.5532/KJAFM.2020.22.4.268
  17. Kim S.O., and J.I. Yun 2010, Prediction of flower bud burst and flowering time of 'Fuji' apple trees based on temperature. Proc of the Spring Meeting of Korean Meteorol Soc, pp 377-378. (in Korean)
  18. KREI (Korea Rural Economic Institute) 2023, Agricultural Outlook 2023 Korea II. pp 535-552. KREI, Naju, Korea. (in Korean)
  19. Lang G.A., J.D. Early, G.C. Martin, R.L. Darnell 1987, Endo-, para-, and ecodormancy: Physiological terminology and classification for dormancy research. HortScience 22:371-377. doi:10.21273/HORTSCI.22.3.371
  20. Lang G.A., J.D. Early, N.J. Arroyave, R.L. Darnell, G.C. Martin, and G.W. Stutte 1985, Dormancy: Toward a reduced, universal terminology. HortScience 20:809-812. doi:10.21273/HORTSCI.20.5.809
  21. Lee Y.S. 2022, A method for estimating the flowering period of apple varieties hongro using meteorological data. Rural Development Administration Service. Available via https://www.nongsaro.go.kr/portal/ (in Korean)
  22. Lee Y.S., J.T. Lee, K.M. Shim, and K.H. Hwang 2002, Estimation of full bloom stage of apple (Malus domestica Borkh. cv. Fugi) in Chungju area. Korean J Agric For Meteorol 4:114-118. (in Korean)
  23. Luedeling E., and P.H. Brown 2011, A global analysis of the comparability of winter chill models for fruit and nut trees. Int J Biometeorol 55:411-421. doi:10.1007/s00484-010-0352-y
  24. Luedeling E., K. Schiffers, T. Fohrmann, and C. Urbach 2021, PhenoFlex-an integrated model to predict spring phenology in temperate fruit trees. Agric For Meteorol 307:108491. doi:10.1016/j.agrformet.2021.108491
  25. Malagi G., M.R. Sachet, I. Citadin, F.G. Herter, M. Bonhomme, J.L. Regnard, and J.M. Legave 2015, The comparison of dormancy dynamics in apple trees grown under temperate and mild winter climates imposes a renewal of classical approaches. Trees 29:1365-1380. doi:10.1007/s00468-015-1214-3
  26. NIHHS (National Institute of Horticultural and Herbal Science) 2016, Criteria for phenology of major fruit trees. NIHHS, Wanju, Korea, pp 12-14. (in Korean)
  27. Parkes H., R. Darbyshire, and N. White 2020, Chilling requirements of apple cultivars grown in mild Australian winter conditions. Sci Hortic 260:108858. doi:10.1016/j.scienta.2019.108858.
  28. RIAST (Research Institute of Agricultural Science and Technology) 1990, Climatic characteristics of major fruit growing zones in Korea. RAIST, Rural Development Administration, Jeonju, Korea, pp 125-132. (in Korean)
  29. RDA (Rural Development Administration) 2012, Criteria of investigation and analysis for agricultural science and technology research. RDA, Jeonju, Korea, pp 619-628. (in Korean)
  30. Richardson E.A., S.D. Seeley, and D.R. Walker 1974, A model for estimating the completion of rest for 'Redhaven' and 'Elberta' peach trees. HortScience 9:331-332.
  31. Samish R.M. 1954, Dormancy in woody plants. Annu Rev Plant Physiol 5:183-204. doi:10.1146/annurev.pp.05.060154.001151
  32. Vegis A. 1964, Dormancy in higher plants. Annu Rev Plant Physiol 15:185-224. doi:10.1146/annurev.pp.15.060164.001153
  33. Yaacoubi A.E., A. Oukabli, M. Hafidi, I. Farrera, T. Ainane, S.I. Cherkaoui, and J.M. Legave 2019, Validated model for apple flowering prediction in the mediterranean area in response to temperature variation. Sci Hortic 249:59-64. doi:10.1016/j.scienta.2019.01.036