• Title/Summary/Keyword: Precious Metals

Search Result 93, Processing Time 0.029 seconds

EFFECT OF TWO OPAQUING TECHNIQUES ON METAL-CERAMIC BOND STRENGTH (Opaque 도재의 도포 방법이 치과용 합금과 도재간의 결합 강도에 미치는 영향)

  • Jang, Il-Seong;Lee, Sun-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.475-488
    • /
    • 1996
  • The opaque porcelain layer of porcelain-fused-to-metal(PFM) restoration is critical for the success of PFM restoration because it is the first layer placed over the treated alloy. But, the methods of opaquing technique have not been confirmed. Usually, the one layer method and two layer method have been used for the application of opaque porcelain. In the past, alloys with porcelain veneers which have been used successfully have contained various precious metals. Recent increase in the cost of precious metals stimulates considerable interest in nonprecious alloys. Although nickel-chromium alloys and nickel-chromium-beryllium alloys have been widely used, the use of cobalt-chromium alloys would be gradually increased with elimination of any potential risk of nickel-related allergic responses and/or beryllium-related toxic responses. This investigation examined one- and two-layer opaque porcelain applications to determine the effect on the bond strength of titanium added cobalt-chromium metal ceramic alloy. Bond strength of Ceramco II porcelain to titanium added cobalt-chromium alloy(2Dentitan) and gold-platinum-palladium alloy(Degudent H) were evaluated by direct shear bond strength test with Instron universal testing machine. The results were as follows; 1. When the mean shear bond strength of each experimental group were compared in $0.25cm^2$ unit area, the titanium added cobalt-chromium alloy/two layer method exhibited the greatest strength(79.7kg), followed by titanium added cobalt-chromium alloy/one layer method(76.2kg), gold-platinum-palladium alloy/two layer method(71.4kg), gold-platinum-palladium alloy/one layer method(64.2kg). 2. No significant differences in bond strength were recorded between the two opaquing techniques for gold-platinum-palladium alloy and titanium added cobalt-chromium alloy. 3. No significant differences in bond strength were recorded between the gold-platinum-palladium alloy and the titanium added cobalt-chromium alloy.

  • PDF

Characterization of Metal Composition in Spent Printed Circuit Boards of Mobile Phones (폐휴대폰 내의 인쇄회로기판에 함유된 금속 성분의 변화)

  • Jeong, jinki;Lee, Jae-chun;Choi, Jun-chul
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.76-80
    • /
    • 2015
  • Mobile phone has become one of the essential items in our daily life. In Korea, it is estimated that more than 20 million cell phones are discarded each year due to advancement in technology, thus creating disposal and environmental pollution. In order to conserve the resources, their proper recycling is essential as it contains both valuable and toxic metals. The economics of the recycling will depend on the amount and value of the metals. Therefore, it is necessary to determine the composition of the metals present in the different cell phones. In the present study, a report is presented on the variation of metal content per year of waste mobile phones. A review has been made for the mobile phones manufactured during the period 2000-2009 and metal content of the printed circuit boards (PCBs) by analyzing their metals. An example of the precious metal palladium and of the heavy metal lead shows the decreasing trend.

Opportunities and Challenges in Metals Recovery from Secondary Sources - US Perspective

  • Han, Kenneth N.
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.3-8
    • /
    • 2001
  • The mineral industry of the United States is going through a challenging time. The US as an industrial nation faces with increasing demand in raw materials to fuel various industrial sectors but, at the same time, meeting environmental constraints associated with excavating and extracting these raw materials. In addition, gradual depletion of material resources. and the necessity of handling more complex forms of resources of primary origin have led to a decline in her resource productivity, once a strategic advantage of the U.S. As a result. the United States currently relies heavily upon foreign importation of various materials such as precious and strategic metals. However, since the US is the major consumer of most of these materials, the recovery of these values from scrap would help renew her position as a resource-producing nation, and ultimately help spur its domestic economy. Furthermore. recycling would also help maintain a clean environment and reduce energy consumption. In this paper. the author attempts to discuss opportunities and challenges lied ahead of the US mineral in relation to recovering their much-needed resources from secondary sources. The need and demand in various metals in the US will be reviewed and discussed. The implication of resource recovery from secondary sources will also be discussed. Extraction methods treating secondary sources are inherently different from those for primary sources. There is a need for new technologies which are metallurgically efficient and environmentally benign in treating secondary sources. Ways to meet such a need will be examined and key factors to be considered in approaching these challenges will be discussed.

  • PDF

Recycling Industry of Urban Mines by Applying Non-Ferrous Metallurgical Processes in Japan (비철제련(非鐵製鍊) 프로세스를 이용한 일본(日本)의 도시광산(都市鑛山) 재자원화산업(再資源化産業))

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.12-27
    • /
    • 2011
  • DOWA group has been working on metal recycling applying the smelting and refining process of KOSAKA Smelter. DOWA has developed it's metal recycling technologies through the treatment of black ore(complex sulfide ores) that contain many kinds of non-ferrous metals. In addition to these special technologies, DOWA has strengthened its hydrometallurgical process of precious metals and ability to deal with low-grade materials such as used electrical appliances or vehicles. On the other hand, JX Nippon Mining & Metals Corporation(JX-NMMC) carries out its metal recycling and industrial waste treatment businesses employing advanced separation, extraction and refining technologies developed through its extensive experience in the smelting of non-ferrous metals. JX-NMMC collects approximately 100,000t/y of copper and precious metal scraps from waste sources such as electronic parts, mobile phones, catalytic converters, print circuit boards and gold plated parts. These items are recycled through the smelting and refining operations of Saganoseki smelter and Hitachi Metal-recycling complex(HMC). In this like, metal recycling industries combined with environmental business service in Japan have been developed through excellent technologies for mineral processing and non-ferrous smelting. Also, both group, Dowa and JX-NMMC, were contributed to establish Japan's recycling-oriented society as the typical leading company of non-ferrous smelting. Now. it is an important issue to set up the collection system for e-waste.

Synthesis of N-Methylthiobenzyl-Chitosan Beads and It's Selective Adsorption Abilities of Metal Ions (N-Methylthiobenzyl-Chitosan Bead의 합성과 금속이온의 선택적 흡착능력)

  • 최한영;한상문;안병제;이성호;유국현;이승진
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.91-99
    • /
    • 2001
  • Cross linked chitosan beads showed high selective adsorption abilities in order of $Au^{3+}$ > $Hg^{2+}$ > $Cu^{2+}$ > $Cd^{2+}$ > $Pt^{4+}$ > ${UO_2}^{2+}$ ions in mixed solution of various metal ions at pH 4.5. N-methyltyiobenzylated chitosan beads(MTB-chitosan beads) were prepared treating with p-(methylthio) benzaldehyde after cross linking of chitosan beads to give them a high selectivity in adsorption of metal ions. The MTB-chitosan beads demonstrated their selectivity on precious metals among various metal ions distinctively. Particularly, the MTB-chitosan had a peculiar selective adsorption on $Pd^{2+}$, $Au^{2+}$, and $Hg^{2+}$ions whilst the cross linked chitosan beads showed its high adsorption on $Pd^{2+}$ at pH 1.1. On the other hand, the cross linked chitosan beads showed its superiority in selective adsorption on $Au^{2+}$, $Cu^{2+}$, and $Hg^{2+}$ions to the MTB-chitosan at pH 4.5 of the test solution. Thus metal selectivities were given to chitosan beads through chemical modifications.

  • PDF

Conservation of Embroidered Textiles and Textile Works (자수 및 직물 공예품의 보존처리)

  • Ryu, Hyo-Seon
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.5
    • /
    • pp.198-210
    • /
    • 2008
  • The purpose of this study is to establish the conservation methods of embroidered textiles and textile works. The conservation of remained textiles is consisting of examination, cleaning, support and consolidation, restoration, and storage and display process. It aims to prevent the damage on textile remains for long time display and storage and to prolong their aesthetics and functionality. The embroidered textiles and textiles works, which are remained by handed down or excavated or included in the Buddhist are embossed with colorful threads on the fabrics: the stitches include embroideries on clothing, bed clothes, wrapping clothes, utensil pouches, panels and Buddhist goods; textile works include hats, ornaments, shoes, attachments of clothes etc. These are composed of mainly fabrics, precious metals, leathers and precious stones, etc., and are fabricated by several techniques such as braiding, twining, sewing as well as weaving. Metal threads were also used to add a decorative effect on these goods. In order to conserve and preserve the remained goods, a special care must be taken on the metal threads, which are the most fragile material among the constituents. Hence, characteristics of metal threads and its cleaning methods, general conservation techniques of a rank badge, which is brocaded and partly attached to Cheogori and Samo(men's hat) from the excavated old tombs are introduced here.

Electrocatalysis of Selective Chlorine Evolution Reaction: Fundamental Understanding and Catalyst Design

  • Taejung Lim;Jinjong Kim;Sang Hoon Joo
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.105-119
    • /
    • 2023
  • The electrochemical chlorine evolution reaction (CER) is an important electrochemical reaction and has been widely used in chlor-alkali electrolysis, on-site generation of ClO-, and Cl2-mediated electrosynthesis. Although precious metal-based mixed metal oxides (MMOs) have been used as CER catalysts for more than half a century, they intrinsically suffer from a selectivity problem between the CER and parasitic oxygen evolution reaction (OER). Hence, the design of selective CER electrocatalysts is critically important. In this review, we provide an overview of the fundamental issues related to the electrocatalysis of the CER and design strategies for selective CER electrocatalysts. We present experimental and theoretical methods for assessing the active sites of MMO catalysts and the origin of the scaling relationship between the CER and the OER. We discuss kinetic analysis methods to understand the kinetics and mechanisms of CER. Next, we summarize the design strategies for new CER electrocatalysts that can enhance the reactivity of MMO-based catalysts and overcome their scaling relationship, which include the doping of MMO catalysts with foreign metals and the development of non-precious metal-based catalysts and atomically dispersed metal catalysts.

Recent Developments of Metal-N-C Catalysts Toward Oxygen Reduction Reaction for Anion Exchange Membrane Fuel Cell: A Review

  • Jong Gyeong Kim;Youngin Cho;Chanho Pak
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.207-219
    • /
    • 2024
  • Metal-N-C (MNC) catalysts have been anticipated as promising candidates for oxygen reduction reaction (ORR) to achieve low-cost polymer electrolyte membrane fuel cells. The structure of the M-Nx moiety enabled a high catalytic activity that was not observed in previously reported transition metal nanoparticle-based catalysts. Despite progress in non-precious metal catalysts, the low density of active sites of MNCs, which resulted in lower single-cell performance than Pt/C, needs to be resolved for practical application. This review focused on the recent studies and methodologies aimed to overcome these limitations and develop an inexpensive catalyst with excellent activity and durability in an alkaline environment. It included the possibility of non-precious metals as active materials for ORR catalysts, starting from Co phthalocyanine as ORR catalyst and the development of methodologies (e.g., metal-coordinated N-containing polymers, metal-organic frameworks) to form active sites, M-Nx moieties. Thereafter, the motivation, procedures, and progress of the latest research on the design of catalyst morphology for improved mass transport ability and active site engineering that allowed the promoted ORR kinetics were discussed.

Analysis of Commercial Recycling Technology and Research Trend of Printed Circuit Boards in Korea (국내 인쇄회로기판의 재활용 상용화 기술 및 연구동향 분석)

  • An, HyeLan;Kang, Leeseung;Lee, Chan-Gi
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.9-18
    • /
    • 2017
  • Recently, the amount of electronic scrap is rapidly increasing due to the rapid growth of the electronics industry. Among the components of electronic scrap, the printed circuit board(PCB) is an important recycling target which includes common metals, precious metals, and rare metals such as gold, silver, copper, tin, nickel and so on. In Korea, however, PCB recycling technologies are mainly commercialized by some major companies, and other process quantities are not accurately counted. According to present situation, several urban mining companies, research institutes, and universities are conducting research on recovery of valuable metals from PCBs and/or reusing them as raw materials that is different from existing commercialization process developed by major companies. In this study, we analyzed not only current status of collection/disposal process and recycling of waste PCBs in Korea but also the trend of recycling technologies in order to help resource circulation from waste PCBs become more active.

Effect of universal primer on shear bond strength between resin cement and restorative materials (다용도 프라이머가 레진 시멘트와 수복재의 전단 결합 강도에 미치는 영향)

  • Kim, Na-Hong;Shim, June-Sung;Moon, Hong-Suk;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.112-118
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the difference in shear bonding strength between resin cements to dental materials when a universal primer (Monobond plus) was applied in place of a conventional primer. Materials and methods: Four groups of testing materials: gold alloy (Argedent Euro, n = 16), non precious metal (T-4, n = 20), zirconia (Cercon, n = 20) and glass ceramic (IPS e.max press, n = 20), were fabricated into discs, which were embedded in an acrylic resin matrix. The gold alloy specimens were airborne-particle abraded, 8 of the specimens were coated with Metal primer II, while the remaining 8 specimens were coated with Monobond plus. The non precious and zirconia specimen were airborne-particle abraded then, the control group received Alloy primer coating, while the other was coated with Monobond plus. Glass ceramic specimens were etched. 10 specimens were coated with Monobond-S and the remaining specimens were coated using Monobond plus. On top of the surface, Multilink N was polymerized in a disc shape. All of the specimens were thermal cycled before the shear bonding strength was measured. Statistical analysis was done with Two sample $t$-test or Mann-Whitney U test (${\alpha}$=.05). Results: There were no significant differences in bonding strength depending on the type of primer used in the gold alloy and glass ceramic groups ($P$>.05), however, the bonding strengths of resin cements to non precious metal and zirconia groups, were significantly higher when the alloy primer was used ($P$<.05). Conclusion: Within the limitations of this study, improvement of universal primers which can be applied to all types of restorations is recommended to precious metals and zirconia ceramics. But, the bond strengths of non precious metals and zirconia ceramics were significantly lower when compared to a 10-MDP primer. More research is needed to apply universal primers to all types of restorations.