DOI QR코드

DOI QR Code

Recent Developments of Metal-N-C Catalysts Toward Oxygen Reduction Reaction for Anion Exchange Membrane Fuel Cell: A Review

  • Jong Gyeong Kim (Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • Youngin Cho (Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • Chanho Pak (Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology)
  • Received : 2024.01.04
  • Accepted : 2024.03.12
  • Published : 2024.05.31

Abstract

Metal-N-C (MNC) catalysts have been anticipated as promising candidates for oxygen reduction reaction (ORR) to achieve low-cost polymer electrolyte membrane fuel cells. The structure of the M-Nx moiety enabled a high catalytic activity that was not observed in previously reported transition metal nanoparticle-based catalysts. Despite progress in non-precious metal catalysts, the low density of active sites of MNCs, which resulted in lower single-cell performance than Pt/C, needs to be resolved for practical application. This review focused on the recent studies and methodologies aimed to overcome these limitations and develop an inexpensive catalyst with excellent activity and durability in an alkaline environment. It included the possibility of non-precious metals as active materials for ORR catalysts, starting from Co phthalocyanine as ORR catalyst and the development of methodologies (e.g., metal-coordinated N-containing polymers, metal-organic frameworks) to form active sites, M-Nx moieties. Thereafter, the motivation, procedures, and progress of the latest research on the design of catalyst morphology for improved mass transport ability and active site engineering that allowed the promoted ORR kinetics were discussed.

Keywords

Acknowledgement

This research was supported by the 'National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022M3J1A1085379)' and 'the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20204010600340)'.

References

  1. W. Hwang and Y.-E. Sung, J. Electrochem. Sci. Technol., 2023, 14(2), 120-130. https://doi.org/10.33961/jecst.2022.00808
  2. Y. J. Sa, J. H. Kim, and S. H. Joo, J. Electrochem. Sci. Technol., 2017, 8(3), 169-182. https://doi.org/10.33961/JECST.2017.8.3.169
  3. G. Kleen, W. Gibbons, and J. Fornaciari, Heavy-Duty Fuel Cell System Cost - 2022, U.S. DOE, 2023. https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/23002-hd-fuel-cell-system-cost-2022.pdf (Accessed on Jan. 2, 2024).
  4. U.S. DOE, DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components, 2020. https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components (Accessed on Jan. 2, 2024).
  5. M. M. Hossen, M. S. Hasan, M. R. I. Sardar, J. bin Haider, Mottakin, K. Tammeveski, and P. Atanassov, Appl. Catal. B Environ., 2023, 325, 121733.
  6. T. J. Omasta, A. M. Park, J. M. LaManna, Y. F. Zhang, X. Peng, L. Q. Wang, D. L. Jacobson, J. R. Varcoe, D. S. Hussey, B. S. Pivovar, and W. E. Mustain, Energy Environ. Sci., 2018, 11(3), 551-558.
  7. M. R. Gerhardt, L. M. Pant, and A. Z. Weber, J. Electrochem. Soc., 2019, 166(7), F3180-F3192. https://doi.org/10.1149/2.0171907jes
  8. H.-H. Yang and R. L. McCreery, J. Electrochem. Soc., 2000, 147(9), 3420-3428. https://doi.org/10.1149/1.1393915
  9. B. B. Blizanac, P. N. Ross, and N. M. Markovic, Electrochim. Acta, 2007, 52(6), 2264-2271. https://doi.org/10.1016/j.electacta.2006.06.047
  10. Y. S. Li, T. S. Zhao, and Z. X. Liang, J. Power Sources, 2009, 187(2), 387-392. https://doi.org/10.1016/j.jpowsour.2008.10.132
  11. S. Gottesfeld, D. R. Dekel, M. Page, C. Bae, Y. Yan, P. Zelenay and Y. S. Kim, J. Power Sources, 2018, 375, 170-184. https://doi.org/10.1016/j.jpowsour.2017.08.010
  12. T. Kang, J. Lee, J. G. Kim and C. Pak, J. Electrochem. Sci. Technol., 2020, 12(1), 137-145.
  13. M. F. Labata, G. Li, J. Ocon and P.-Y. A. Chuang, J. Power Sources, 2021, 487, 229356.
  14. L. Castanheira, W. O. Silva, F. H. B. Lima, A. Crisci, L. Dubau and F. Maillard, ACS Catal., 2015, 5(4), 2184-2194. https://doi.org/10.1021/cs501973j
  15. Z. Miao, X. Wang, M.-C. Tsai, Q. Jin, J. Liang, F. Ma, T. Wang, S. Zheng, B.-J. Hwang, Y. Huang, S. Guo and Q. Li, Adv. Energy Mater., 2018, 8(24), 1801226.
  16. J. Lilloja, E. Kibena-Poldsepp, A. Sarapuu, M. Kaarik, J. Kozlova, P. Paiste, A. Kikas, A. Treshchalov, J. Leis, A. Tamm, V. Kisand, S. Holdcroft and K. Tammeveski, Appl. Catal. B Environ., 2022, 306, 121113.
  17. M. Wang, H. X. Zhan, G. Thirunavukkarasu, I. Salam, J. R. Varcoe, P. Mardle, X. Li, S. Mu and S. Du, ACS Energy Lett., 2019, 4(9), 2104-2110. https://doi.org/10.1021/acsenergylett.9b01407
  18. J. Li, S. Ghoshal, W. Liang, M.-T. Sougrati, F. Jaouen, B. Halevi, S. McKinney, G. McCool, C. Ma, X. Yuan, Z.F. Ma, S. Mukerjee and Q. Jia, Energy Environ. Sci., 2016, 9(7), 2418-2432. https://doi.org/10.1039/C6EE01160H
  19. F. Jaouen, J. Herranz, M. Lefevre, J. P. Dodelet, U. I. Kramm, I. Herrmann, P. Bogdanoff, J. Maruyama, T. Nagaoka, A. Garsuch, J. R. Dahn, T. Olson, S. Pylypenko, P. Atanassov and E. A. Ustinov, ACS Appl. Mater. Interfaces, 2009, 1(8), 1623-1639. https://doi.org/10.1021/am900219g
  20. A. Friedman, M. Mizrahi, N. Levy, N. Zion, M. Zachman and L. Elbaz, ACS Appl. Mater. Interfaces, 2021, 13(49), 58532-58538. https://doi.org/10.1021/acsami.1c16311
  21. H. Liu, L. Jiang, Y. Sun, J. Khan, B. Feng, J. Xiao, H. Zhang, H. Xie, L. Li, S. Wang and L. Han, Adv. Funct. Mater., 2023, 33(35), 2304074.
  22. P. G. Santori, F. D. Speck, S. Cherevko, H. A. Firouzjaie, X. Peng, W. E. Mustain and F. Jaouen, J. Electrochem. Soc., 2020, 167(13), 134505.
  23. W. Zhu, Y. Pei, J.C. Douglin, J. Zhang, H. Zhao, J. Xue, Q. Wang, R. Li, Y. Qin, Y. Yin, D. R. Dekel and M. D. Guiver, Appl. Catal. B Environ., 2021, 299, 120656.
  24. M. Muhyuddin, E. Berretti, S.A. Mirshokraee, J. Orsilli, R. Lorenzi, L. Capozzoli, F. D'Acapito, E. Murphy, S. Guo, P. Atanassov, A. Lavacchi and C. Santoro, Appl. Catal. B Environ., 2024, 343, 123515.
  25. N. Ramaswamy, U. Tylus, Q. Jia and S. Mukerjee, J. Am. Chem. Soc., 2013, 135(41), 15443-15449. https://doi.org/10.1021/ja405149m
  26. Y. Zhao, H.-C. Chen, X. Ma, J. Li, Q. Yuan, P. Zhang, M. Wang, J. Li, M. Li, S. Wang, H. Guo, R. Hu, K.-H. Tu, W. Zhu, X. Li, X. Yang and Y. Pan, Adv. Mater., 2024, 36(11), 2308243.
  27. K.-M. Zhao, S. Liu, Y.-Y. Li, X. Wei, G. Ye, W. Zhu, Y. Su, J. Wang, H. Liu, Z. He, Z.-Y. Zhou and S.-G. Sun, Adv. Energy Mater., 2022, 12(11), 2103588.
  28. X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu and J. Shui, Nat. Catal., 2019, 2, 259-268. https://doi.org/10.1038/s41929-019-0237-3
  29. C. Shao, S. Zhuang, H. Zhang, Q. Jiang, X. Xu, J. Ye, B. Li and X. Wang, Small, 2023, 17(6), 2006178.
  30. D. Menga, F. Ruiz-Zepeda, L. Moriau, M. Sala, F. Wagner, B. Koyuturk, M. Bele, U. Petek, N. Hodnik, M. Gaberscek and T.-P. Fellinger, Adv. Energy Mater., 2019, 9(43), 1902412.
  31. T. Al-Zoubi, Y. Zhou, X. Yin, B. Janicek, C. Sun, C.E. Schulz, X. Zhang, A. A. Gewirth, P. Huang, P. Zelenay and H. Yang, J. Am. Chem. Soc., 2020, 142(12), 5477-5481. https://doi.org/10.1021/jacs.9b11061
  32. M. Liu, T. Sun, T. Peng, J. Wu, J. Li, S. Chen, L. Zhang, S. Li, J. Zhang and S. Sun, ACS Energy Lett., 2023, 8(11), 4531-4539.
  33. A. Mehmood, M. Gong, F. Jaouen, A. Roy, A. Zitolo, A. Khan, M.-T. Sougrati, M. Primbs, A. M. Bonastre, D. Fongalland, G. Drazic, P. Strasser, and A. Kucernak, Nat. Catal., 2022, 5, 311-323. https://doi.org/10.1038/s41929-022-00772-9
  34. S. Liu, C. Li, M. J. Zachman, Y. Zeng, H. Yu, B. Li, M. Wang, J. Braaten, J. Liu, H. M. Meyer III, (…), and G. Wu, Nat. Energy, 2022, 7, 652-663. https://doi.org/10.1038/s41560-022-01062-1
  35. Y. Zeng, C. Li, B. Li, J. Liang, M. J. Zachman, D. A. Cullen, R. P. Hermann, E. E. Alp, B. Lavina, S. Karakalos, (…), and G. Wu, Nat. Catal., 2023, 6, 1215-1227.
  36. R. Jasinski, Nature, 1964, 201(4925), 1212-1213. https://doi.org/10.1038/2011212a0
  37. H. Jahnke and M. Schonborn, SERAI, Troisiemes Journees Int. d'Etude des Piles a Combustible, Presses Acad. Europeennes, Brussels, 1969, 60.
  38. H. Alt, H. Binder and G. Sandstede, J. Catal., 1973, 28(1), 8-19. https://doi.org/10.1016/0021-9517(73)90173-5
  39. H. Jahnke, M. Schonborn and G. Zimmermann, Organic dyestuffs as catalysts for fuel cells, In: F. P. Schafer, et al. (eds.), Phys. Chem. Appl. Dyestuffs. Topics in Current Chemistry, Springer, Berlin, Heidelberg, 1976, 61, 133-181.
  40. S. Gupta, D. Tryk, I. Bae, W. Aldred and E. Yeager, J. Appl. Electrochem., 1989, 19, 19-27. https://doi.org/10.1007/BF01039385
  41. D. Ohms, S. Herzog, R. Franke, V. Neumann, K. Wiesener, S. Gamburcev, A. Kaisheva and I. Iliev, J. Power Sources, 1992, 38(3), 327-334. https://doi.org/10.1016/0378-7753(92)80122-R
  42. A. L. Bouwkamp-Wijnoltz, W. Visscher and J. A. R. van Veen, Electrochim. Acta, 1998, 43(21-22), 3141-3152. https://doi.org/10.1016/S0013-4686(98)00076-0
  43. M. Bron, S. Fiechter, M. Hilgendorff and P. Bogdanoff, J. Appl. Electrochem., 2002, 32, 211-216. https://doi.org/10.1023/A:1014753613345
  44. F. Jaouen, M. Lefevre, J.-P. Dodelet and M. Cai, J. Phys. Chem. B, 2006, 110(11), 5553-5558. https://doi.org/10.1021/jp057135h
  45. H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More and P. Zelenay, Science, 2017, 357(6350), 479-484. https://doi.org/10.1126/science.aan2255
  46. Z. Yang, Y. Chen, S. Zhang and J. Zhang, Adv. Func. Mater., 2023, 33(26), 2215185.
  47. K.-H. Lee, C. Pak, K. S. Park, S.-A. Jin, K. Kwon and D. Yoo, Composite, electrode catalyst including the composite, method of preparing the composite, and fuel cell including the composite, U.S. Patent 9,029,043 B2, 2015.
  48. S. Ma, G. A. Goenaga, A. V. Call and D.-J. Liu, Chem, Eur. J., 2011, 17(7), 2063-2067. https://doi.org/10.1002/chem.201003080
  49. E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz and J.-P. Dodelet, Nat. Commun., 2011, 2, 416.
  50. K. S. Park, S. A. Jin, K. H. Lee, J. Lee, I. Song, B.-S. Lee, S. Kim, J. Sohn, C. Pak, G. Kim, S.-G. Doo and K. Kwon, Int. J. Electrochem. Sci., 2016, 11(11), 9295-9306. https://doi.org/10.20964/2016.11.27
  51. Y. J. Sa, D.-J. Seo, J. Woo, J. T. Lim, J. Y. Cheon, S. Y. Yang, J. M. Lee, D. Kang, T. J. Shin, H. S. Shin, H. Y. Jeong, C. S. Kim, M. G. Kim, T.-Y. Kim and S. H. Joo, J. Am. Chem. Soc., 2016, 138(45), 15046-15056. https://doi.org/10.1021/jacs.6b09470
  52. Y. Zhang, S. Zhu, X. Wang, Z. Jin, J. Ge, C. Liu and W. Xing, J. Electroanal. Chem., 2023, 943, 117506.
  53. Y. Zhou, R. Lu, X. Tao, Z. Qiu, G. Chen, J. Yang, Y. Zhao, X. Feng and K. Mullen, J. Am. Chem. Soc., 2023, 145(6), 3647-3655. https://doi.org/10.1021/jacs.2c12933
  54. S. H. Lee, J. Kim, D. Y. Chung, J. M. Yoo, H. S. Lee, M. J. Kim, B. S. Mun, S. G. Kwon, Y.-E. Sung and T. Hyeon, J. Am. Chem. Soc., 2019, 141(5), 2035-2045. https://doi.org/10.1021/jacs.8b11129
  55. H. Adabi, A. Shakouri, N. U. Hassan, J. R. Varcoe, B. Zulevi, A. Serov, J. R. Regalbuto and W. E. Mustain, Nat. Energy, 2021, 6, 834-843. https://doi.org/10.1038/s41560-021-00878-7
  56. C. He, A. C. Yang-Neyerlin and B. S. Pivovar, J. Electrochem. Soc., 2022, 169(2), 024507.
  57. Q. He, L. Zeng, J. Wang, J. Jiang, L. Zhang, J. Wang, W. Ding and Z. Wei, J. Power Sources, 2021, 489, 229499.
  58. P. G. Santori, F. D. Speck, S. Cherevko, H. A. Firouzjaie, X. Peng, W. E. Mustain and F. Jaouen, J. Electrochem. Soc., 2020, 167(13), 134505.
  59. H. Adabi, P. G. Santori, A. Shakouri, X. Peng, K. Yassin, I. G. Rasin, S. Brandon, D. R. Dekel, N. U. Hassan, M.-T. Sougrati, A. Zitolo, J. R. Varcoe, J. R. Regalbuto, F. Jaouen and W. E. Mustain, Mater. Today Adv., 2021, 12, 100179.
  60. Z. Jiang, X. Liu, X.-Z. Liu, S. Huang, Y. Liu, Z.-C. Yao, Y. Zhang, Q.-H. Zhang, L. Gu, L.-R. Zheng, L. Li, J. Zhang, Y. Fan, T. Tang, Z. Zhuang and J.-S. Hu, Nat. Commun., 2023, 14, 1822.
  61. J.G. Kim, J. Cho, S. Han, H. Lee, E. Yuk, B. Bae, S. S. Jang and C. Pak, J. Mater. Chem. A, 2022, 10(10), 5361-5372. https://doi.org/10.1039/D1TA07264A
  62. S. Akula, M. Mooste, J. Kozlova, M. Kaarik, A. Treshchalov, A. Kikas, V. Kisand, J. Aruvali, P. Paiste, A. Tamm, J. Leis and K. Tammeveski, Chem. Eng. J., 2023, 458, 141468.
  63. J. Lilloja, M. Mooste, E. Kibena-Poldsepp, A. Sarapuu, A. Kikas, V. Kisand, M. Kaarik, J. Kozlova, A. Treshchalov, P. Paiste, J. Aruvali, J. Leis, A. Tamm, S. Holdcroft and K. Tammeveski, Electrochim. Acta, 2023, 439, 141676.
  64. J. Lilloja, E. Kibena-Poldsepp, A. Sarapuu, A Konovalova, M. Kaarik, J. Kozlova, P. Paiste, A. Kikas, A. Treshchalov, J. Aruvali, A. Zitolo, J. Leis, A. Tamm, V. Kisand, S. Holdcroft and K. Tammeveski, ACS Appl. Energy Mater., 2023, 6(10), 5519-5529.
  65. Y. Liu, S. Yuan, C. Sun, C. Wang, X. Liu, Z. Lv, R. Liu, Y. Meng, W. Yang, X. Feng and B. Wang, Adv. Energy Mater., 2023, 13(46), 2302719.
  66. Q. H. Nguyen, V. D. C. Tinh, S. Oh, T. M. Pham, T. N. Tu, D. Kim, J. Han, K. Im and J. Kim, Chem. Eng. J., 2024, 481, 148508.
  67. K. Sun, J. Dong, H. Sun, X. Wang, J. Fang, Z. Zhuang, S. Tian and X. Sun, Nat. Catal., 2023, 6, 1164-1173.
  68. L. Guo, X. Wan, J. Liu, X. Guo, X. Liu, J. Shang, R. Yu and J. Shui, ACS Appl. Mater. Interfaces, 2024, 16(3), 3388-3395. https://doi.org/10.1021/acsami.3c15627
  69. Y. Zhao, H. Nara, D. Jiang, T. Asahi, S. M. Osman, J. Kim, J. Tang and Y. Yamauchi, Small, 2023, 19(48), 2304450.
  70. Y. Persky, L. Kielesinski, S. N. Reddy, N. Zion, A. Friedman, H. C. Honig, B. Koszarna, M. J. Zachman, I. Grinberg, D. T. Gryko and L. Elbaz, ACS Catal., 2023, 13(16), 11012-11022.
  71. J. Lee, J. G. Kim and C. Pak, J. Energy Chem., 2021, 52, 326-331. https://doi.org/10.1016/j.jechem.2020.04.032
  72. G. Chen, P. Liu, Z. Liao, F. Sun, Y. He, H. Zhong, T. Zhang, E. Zschech, M. Chen, G. Wu, J. Zhang and X. Feng, Adv. Mater., 2020, 32(8), 1907399.
  73. J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard and H. Jonsson, J. Phys. Chem. B, 2004, 108(46), 17886-17892. https://doi.org/10.1021/jp047349j
  74. H. Tian, A. Song, P. Zhang, K. Sun, J. Wang, B. Sun, Q. Fan, G. Shao, C. Chen, H. Liu, Y. Li and G. Wang, Adv. Mater., 2023, 35(14), 2210714.
  75. J. Liu, W. Chen, S. Yuan, T. Liu and Q. Wang, Energy Environ. Sci., 2024, 17(1), 249-259.