• Title/Summary/Keyword: Power-line protocol

Search Result 68, Processing Time 0.029 seconds

Security Analysis of KS X 4600-1 / ISO IEC 12139-1 (원격 검첨용 PLC 기술(KS X 4600-1 / ISO IEC 12139-1) 보안성 분석)

  • Hong, Jeong-Dae;Cheon, Jung-Hee;Ju, Seong-Ho;Choi, Moon-Suk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.1
    • /
    • pp.65-75
    • /
    • 2011
  • Power Line Communication (PLC) is a system for carrying data on a conductor used for electric power transmission. Recently, PLC has received much attention due to connection efficiency and possibility of extension. It can be used for not only alternative communication, in which communication line is not sufficient, but also for communication between home appliances. Korea Electronic Power Cooperation (KEPCO) is constructing the system, which automatically collects values of power consumption of every household. Due to the randomness and complicated physical characteristics of PLC protocol (KS X4600-1), it has been believed that the current PLC is secure in the sense that it is hard that an attacker guesses or modifies the value of power consumption. However, we show that the randomness of the protocol is closely related to state of the communication line and thus anyone can easily guess the randomness by checking the state of the communication line. In order to analyze the security of PLC, we study the protocol in detail and show some vulnerability. In addition, we suggest that PLC needs more secure protocol on higher layers. We expect that the study of PLC help in designing more secure protocol as well.

The Development of Power System Automation based on the CAN Communication Protocol (CAN 통신을 기반으로한 전력 시스템 자동화 구축)

  • Park, Jong-Chan;Kim, Beung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.3
    • /
    • pp.95-99
    • /
    • 2003
  • In this paper, the power system automation based on CAN communication protocol is introduced. Along with digitalization of electrical device, the various on-line services such as remote control, remote monitoring, remote parameter setting, fault data recording and remote diagnostic have been realized and become available. Therefore, it is necessary for those electrical devices to have real-time and reliable communication protocols. Author proposes DNPC(Distributed Network Protocol with CAN) which is proper to the power system SCADA (Supervisory Control And Data Acquisition) and DCS (Distributed Control System). The physical and datalink layer of DNPC protocol consists of the CAN2.0B which has the real-time characteristics and powerful error control scheme. As the transport and application layer, DNP3.0 is adopted because of its flexibility and compatible feature. Using the DNPC protocol, the power system automation is realized.

Development of the Protocol for the Power Management Agent System with IEEE 1344 (IEEE 1344를 이용한 Agent형 전력 관리 시스템 프로토콜 설계)

  • Lee, Jong-Eun;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.105-107
    • /
    • 2005
  • The Power system is one of the biggest and complicated non-linear systems. It is necessary to develop the power defense system to manage the power system efficiently and to prevent from the power failure, black out in nationwide, that is caused by a specific bus or power transmission line. In this paper, the power system developed here is called 'Power Management Agent System' in which a protocol to communicate for this system is developed. The protocol is designed based on the IEEE 1344 for synchronized system with GPS. Also we developed a simulation system to demonstrate how to implement the protocol.

  • PDF

Implementation of multiple access bidirectional serial communications protocol using DC power line (직류 전원선을 이용한 다중 접속 양방향 직렬통신 프로토콜 구현)

  • Han, Kyong-Ho;Kim, Won-Il;Hwang, Ha-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.332-338
    • /
    • 2008
  • This paper handles, implementation of multiple access bidirectional serial communications protocol using two common DC power lines, whict are power supply and ground, connecting multiple devices. Communication between the host and the multiple clients are performed using unique packet data with device ID unique to each devices connected on the common power lines. Host initiates data communications by transmitting command packet to the designated client with the client's ID and the client responds by transmitting response packet to the host and in this way, multiple clients and host exchange the packet through the common power lines. The normal voltage of the power communication line maintains 24V corresponding to level 1 and the host drops the voltage to 12V on sending level 0 signal, also the clients normally keeps the line voltage to 24V use pull-down circuit to drop the voltage to 12V on sending level 1 signal. Power supply originates from the host, the host senses the voltage level of the power communication lines and when the clients activates pull down circuit to send level 0 signal and the voltage drops to 12V, the hosts switches power source from 24V to 12V. Also, when clients deactivate pull down circuit to send level 1 signal, the host senses the voltage increase and switches the power source from 12V to 24V. Experimental circuit is designed with one hosts and four clients and verified the power line voltage switching operation depending on the data signal levels on the power line. The proposed research result can be applied to two wire power communications system with one host and multiple low current consumption clients.

  • PDF

Implementation of a modem for home network power line communication based on improved LonWorks technology (향상된 론웍 기반의 홈 네트워크용 전력선 모뎀 구현)

  • 마낙원;김녹원;김우섭;이창은;문경덕;김석기
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.367-370
    • /
    • 2002
  • In this paper, we propose a new node architecture LonWorh control Network for home network system environmint using power line communications. Using conventional Lon Work technology is a many disputable points for home network. LonWork network system needs high-cost development equipment. Moreover, conventional Lon Work system can not implement high-grade algorithms and variety application operation. because of the limitation of processing ability in Neuron chip. For that reason, the proposed structure is applicable to low-cost and more complex applications which are impossible in home network using conventional Lonworks structure. The proposed structure is implemented with some hardware and かone software for power line home network. The physical layer and the MAC layer of the LonTalk protocol within ton Work are implemented in hardware, which decreases the development costs communication processor. The upper of link layer of the LonTalk protocol is implemented with software, which decreases the development costs of software and increases the flexibility of tile system and increases the extension of the system. We verified the commercial feasibility of the proposed system through the power line tests with the existing LonWorks network in home network. As a result, it is concluded that the proposed architecture provides increasing flexibility and decreasing cost of the system.

  • PDF

Study on Network Throughput of Power Line Communication System in In-Building Network (전력선 통신 시스템의 구내 네트워크 데이터 처리량 연구)

  • Jang, Ho-Deok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.43-47
    • /
    • 2021
  • This paper investigates the network throughput of PLC (Power Line Communication) system in the in-building network. The OFDM (Orthogonal Frequency Division Multiplexing) modulation format and adaptive bit loading algorithm is used to minimize the effect of signal loss and noise on transmission performance in the power line channel characterized by frequency selective fading. The network throughput of the PLC system which consists of gateway and CPE(Customer Premise Equipment) PLC modem in the in-building network is measured by network performance measurement tool, iperf and analyzed according to the TCP (Transmission Control Protocol) window size.

Design and Implementation of XCP Network System

  • Heo, Jong-Man;Kang, Hyoung-Koo;Kim, Woo-Young;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1581-1585
    • /
    • 2005
  • This paper describes the design and implementation of a XCP (Xeline Control Protocol) network system. XCP is an information oriented protocol which delivers information with high reliability according to the predefined rule. The XCP network system is implemented with partly hardware and partly software based on the power line communication(PLC) environment. A network management tool which interacts with devices is also developed. In order to verify the feasibility of the proposed architecture, the implemented XCP network system is evaluated using a lighting control system.

  • PDF

A Study on Home Telemetering System using Power Line Communication (전력선 통신을 이용한 가정용 원격 검침 시스템에 관한 연구)

  • Yu Yung-Ho;Shin Il-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.678-684
    • /
    • 2005
  • In this Paper telemetering system for home automation is Proposed and implemented. Proposed and developed systems are composed with a home server and a few clients which send metering data of gas electric power water and home security to home server using power line communication. Management computer located in office of apartment complex collects all kinds of measured home data from each home server with multi drop communication by UDP Protocol A simple ASK method is used for power line communication Collected data from each home can be used for issuing the bill of each house and web service. The experiments were carried out under laboratory environment using various kinds of electric home appliances to ascertain the performance.

Realtime Wireless Sensor Line Protocol for Forest Fire Monitoring System (실시간 센서 네트워크 프로토콜을 이용한 산불 모니터링 시스템의 구현)

  • Kim, Jae-Ho;Lee, Sang-Shin;Ahn, Il-Yeup;Kim, Tae-Hyun;Won, Kwang-Ho;Kim, Seong-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1031-1034
    • /
    • 2005
  • This paper introduces a novel sensor network protocol, R-WSLP(Realtime Wireless Sensor Line Protocol), which has extremely low latency characteristic in large-scale WSN. R-WSLP is proposed to implement realtime forest fire monitoring system. We propose Distributed TDMA method for the multiple channel access and Time Synchronized Forwarding Mechanism instead of routing technique to achieve low latency network. Also, R-WSLP provides extremely low power operation which we accomplished by reducing idle listening. In our experimentation, we get successful results at the forest fire monitoring system with our protocol.

  • PDF

A Study on Implementation of Line Array Sensor Data Processing Platform Using PowerPC and Vxworks (PowerPC 및 VxWorks를 이용한 예인선배열센서 데이터처리 플랫폼 구현에 관한 연구)

  • Lim, Byeong-Seon;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1603-1609
    • /
    • 2010
  • This Paper deals with a design, making a prtotype and test methods of Real-time towed Line Array Sensor Data processing board for fast data communication and long range data transmission with SFM(Serial FPDP Module) through Optic-fiber channel. Towed line array sensors are installed in Frigate and the each LAS A, B, C group data from LAS is packed a previously agreed protocol and transmitted to the signal processing unit. Considering the limited space of VME 6U size, LAS Data processing board is designed with MPC8265 PowerPC Controller of Freescale for main system control and Altera's CycloneIII FPGA for sensor data packing, self-test simulation data generation, S/W FIFO et cetera. LAS Data processing board have VxWorks, the RTOS(Real Time Operating System) that present many device drivers, peripheral control libraries on board for real-time data processing.